Search results for "superfluidity"
showing 10 items of 110 documents
Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation
2006
We examine several vectorial and tensorial descriptions of the geometry of turbulent vortex tangles. We study the anisotropy in rotating counterflow experiments, in which the geometry of the tangle is especially interesting because of the opposite effects of rotation, which orients the vortices, and counterflow, which randomizes them. We propose to describe the anisotropy and the polarization of the vortex tangle through a tensor, which contains the first and second moments of the distribution of the unit vector ${\mathbf{s}}^{\ensuremath{'}}$ locally tangent to the vortex lines. We use an analogy with paramagnetism to estimate the anisotropy, the average polarization, the polarization fluc…
Anomalous behavior of the second magnetization peak inLa1.81Sr0.19CuO4single crystals: Possible influence of two-band superconductivity
2008
We report an anomalous temperature $T$ variation of the field ${H}_{\text{on}}$ for the onset of the second magnetization peak in ${\text{La}}_{1.81}{\text{Sr}}_{0.19}{\text{CuO}}_{4}$ single crystals with the external magnetic field $H$ oriented parallel to the $c$ axis. While the peak field ${H}_{p}$ has a continuous decrease with increasing $T$, ${H}_{\text{on}}$ exhibits a sudden decrease for $T\ensuremath{\sim}11--15\text{ }\text{K}$. This behavior appears to be related to the particular $T$ dependence of the superfluid density in the case of two-band superconductivity affecting the $T$ variation of the elastic energy of the vortex system at low $H$.
The influence of topological phase transition on the superfluid density of overdoped copper oxides
2017
We show that a topological quantum phase transition, generating flat bands and altering Fermi surface topology, is a primary reason for the exotic behavior of the overdoped high-temperature superconductors represented by $\rm La_{2-x}Sr_xCuO_4$, whose superconductivity features differ from what is described by the classical Bardeen-Cooper-Schrieffer theory [J.I. Bo\^zovi\'c, X. He, J. Wu, and A. T. Bollinger, Nature 536, 309 (2016)]. We demonstrate that 1) at temperature $T=0$, the superfluid density $n_s$ turns out to be considerably smaller than the total electron density; 2) the critical temperature $T_c$ is controlled by $n_s$ rather than by doping, and is a linear function of the $n_s$…
Hydrodynamic Equations of Anisotropic, Polarized, Turbulent Superfluids
2009
Superfluid turbulence in rotating containers: Phenomenological description of the influence of the wall
2005
In this paper a previous equation for the evolution of vortex line density L in counterflow superfluid turbulence in rotating containers is generalized, in order to take into account the influence of the walls. This model incorporates the effects of counterflow velocity V and of angular velocity {omega} of the container, and introduces corrective terms depending on {delta}/d, {delta} being the intervortex spacing, of the order L{sup -1/2}, and d the diameter of the channel. The stability of the solutions for L, for several regimes of averaged counterflow velocity V and angular velocity {omega}, is analyzed. Our mathematical analysis reveals that qualitative consistency allows us to reduce t…
Elementary excitations in superfluidH3e-H4emixtures
2010
We have studied the dynamic structure function of superfluid $^{3}\text{H}\text{e-}^{4}\text{H}\text{e}$ mixtures at zero temperature as a function of pressure and $^{3}\text{H}\text{e}$ concentration. Results obtained in the full random-phase approximation (RPA) plus density-functional theory and in a generalized Landau-Pomeranchuk approach are presented and compared with experiment. Analytic expressions for several sum rules of the dynamic structure functions have been determined, and have been used to obtain average energies of the collective excitations. In the RPA approach, the dispersion relation of the collective modes shows typical features of level repulsion between zero-soundlike …
HYDRODYNAMICAL MODELS OF SUPERFLUID TURBULENCE
2011
This review paper puts together some of our results concerning the application of non equilibrium Thermodynamics to superfluid liquid helium. Two of the most important situations of this quantum fluid are rotating superfluid and superfluid turbulence, both characterized by the presence of quantized vortices (vortex lines whose core is about 1 Angstrom and the quantum of circulation is $h/m$, $h$ being the Plank's constant and $m$ the mass of helium atom). In the first part of the work a non-standard model of superfluid helium, which considers heat flux as independent variable, is briefly recalled, and compared with the well known two-fluid model, in absence of vortices, proposed by Tisza an…
Dissipative terms of thermal nature in the theory of an ideal monoatomic superfluid
1996
A dissipative model of helium II was built up in previous works, using a 13-field extended thermodynamic theory formulated by Liu and Muller. In this work a generalization of such model is presented, where an extended thermodynamics with 14 fields due to Kremer is used. It is shown that the fourteenth field is able to account for the experimental data concerning the second sound attenuation. Further, the proposed theory is able to explain the Osborne experiment. Finally, a comparison with the two-fluid model is performed, emphasizing the different ways in which the dissipative phenomena are explained by the two theories.
Propagation of fourth sound in turbulent superfluids via extended thermodynamics
2011
The work deals with further developments of a study previously initiated, in which a macroscopic one-fluid model of inhomogeneous turbulent superfluids, based on extended thermodynamics, had been formulated. In this work the study is carried on. First the influence of the remnant vortices on the propagation of the first and second sound is studied. Then a boundary condition able to explain the reversible flow of superfluid flowing through a thin capillary is postulated and two vector fields, which have the dimensions of velocity and can be interpreted as the velocities of normal and superfluid components, are introduced. By using these new fields, a comparison between this model and the Hal…
Extended thermodynamics of polymers and superfluids
2008
Abstract Polymer solutions and turbulent superfluids have in common the presence of a complex tangle of lines – macromolecules in the former, quantized vortex lines in the latter – which contribute to the internal friction and viscous pressure of the system and make them typical non-Newtonian fluids. Here we briefly review some recent studies on such tangles and their consequences on the dynamics and thermodynamics of the whole system, using the framework of extended irreversible thermodynamics. For polymer solutions, we deal with the coupling of diffusion and viscous pressure and its effects on the stability of the solution and shear-induced phase separation; for superfluids, we focus our …