Search results for "supernova"

showing 10 items of 330 documents

Optical and near-infrared recombination lines of oxygen ions from Cassiopeia A knots

2008

Context. Fast-moving knots (FMK) in the Galactic supernova remnant Cassiopeia A consist mainly of metals and allow to study element production in supernovae and shock physics in great detail. Aims. We work out theoretically and suggest to observe previously unexplored class of spectral lines -- metal recombination lines in optical and near-infrared bands -- emitted by the cold ionized and cooling plasma in the fast-moving knots. Methods. By tracing ion radiative and dielectronic recombination, collisional $l$-redistribution and radiative cascade processes, we compute resulting oxygen, silicon and sulphur recombination line emissivities. It allows us to determine the oxygen recombination lin…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsPlasmaAstrophysicsAstrophysicsSpectral lineIonCassiopeia ASupernovaSpace and Planetary ScienceIonizationRadiative transferAtomic physicsSupernova remnantAstrophysics::Galaxy Astrophysics
researchProduct

XMM-Newton observations of the supernova remnant IC 443: II. evidence of stellar ejecta in the inner regions

2008

We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, in order to get important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. The hard X-ray thermal emission (1.4-5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT>1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collis…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsPlasmaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPhoton energyAstrophysicsPulsar wind nebulaSupernovaSpace and Planetary ScienceIonizationEmission spectrumEjectaSupernova remnantAstrophysics::Galaxy Astrophysics
researchProduct

Kicked neutron stars and microlensing

1996

Due to the large kick velocities with which neutron stars are born in supernovae explosions, their spatial distribution is more extended than that of their progenitor stars. The large scale height of the neutron stars above the disk plane makes them potential candidates for microlensing of stars in the Large Magellanic Cloud. Adopting for the distribution of kicks the measured velocities of young pulsars, we obtain a microlensing optical depth of $\tau \sim 2 N_{10} \times 10^{-8}$ (where $N_{10}$ is the total number of neutron stars born in the disk in units of $10^{10}$). The event duration distribution has the interesting property of being peaked at $T \sim 60$--80 d, but for the rates t…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsScale heightAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensingAstrophysicsStarsNeutron starSupernovaHigh Energy Physics - PhenomenologyGravitational lensHigh Energy Physics - Phenomenology (hep-ph)PulsarSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsLarge Magellanic CloudAstrophysics::Galaxy Astrophysics
researchProduct

The X-ray emission of the supernova remnant W49B observed withXMM-Newton

2006

In the framework of the study of supernova remnants and their complex interaction with the interstellar medium, we report on an XMM-Newton EPIC observation of the Galactic supernova remnant W49B. We investigate the spatial distribution of the chemical and physical properties of the plasma, so as to get important constraints on the physical scenario, on the dynamics of the supernova explosion, and on the interaction of the supernova remnant with the ambient interstellar clouds. We present line images, equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca and …

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Interstellar cloudFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsX-rays: ISMISM: individual object: W49BInterstellar mediumSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsSupernova nucleosynthesisEmission spectrumHypernovaSupernova remnantSNR X-raysEquivalent widthISM: supernova remnantAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

2011

W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma, and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basi…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)Astronomy and AstrophysicsAstrophysicsPlasmaThermal conductionInterstellar mediumPhysics::Plasma PhysicsSpace and Planetary ScienceIonizationRadiative transferEjectaSupernova remnantAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Actinides and the sources of cosmic rays

2004

Abstract The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core-collapse supernovae (SNe), we have determined the actinide abundances averaged over various assumed time intervals for their supernovae generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the SN-active cores of superbubbles, as a function of their ages and mean m…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaMetallicityAstronomyAstronomy and AstrophysicsSuperbubbleCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsInterstellar mediumSupernovaSpace and Planetary ScienceNucleosynthesisAbundance (ecology)Galaxy formation and evolutionAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsNew Astronomy Reviews
researchProduct

XMM‐NewtonObservations of the Supernova Remnant IC 443. I. Soft X‐Ray Emission from Shocked Interstellar Medium

2006

The shocked interstellar medium around IC443 produces strong X-ray emission in the soft energy band (E<1.5 keV). We present an analysis of such emission as observed with the EPIC MOS cameras on board the XMM-Newotn observatory, with the purpose to find clear signatures of the interactions with the interstellar medium (ISM) in the X-ray band, which may complement results obtained in other wavelenghts. We found that the giant molecular cloud mapped in CO emission is located in the foreground and gives an evident signature in the absorption of X-rays. This cloud may have a torus shape and the part of torus interacting with the IC443 shock gives rise to 2MASS-K emission in the southeast. The…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaMolecular cloudAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsTorusAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsPlasmaAstrophysicsInterstellar mediumSpace and Planetary ScienceObservatoryElectronic band structureSupernova remnantAbsorption (electromagnetic radiation)Astrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Ultra–High‐Energy Cosmic Rays from Hypothetical Quark Novae

2005

We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies $10^{15} {\rm eV} 10^{18.6}$ eV. The composition is dominated by ions present in the pulsar wind in the energy range above $10^{18.6}$ eV, while at energies below $10^{18}$ eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaQuark-novaAstronomy and AstrophysicsCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences7. Clean energyRelativistic particleNeutron starSupernovaPulsarQuark starSpace and Planetary Science0103 physical sciencesUltra-high-energy cosmic ray010306 general physics010303 astronomy & astrophysicsThe Astrophysical Journal
researchProduct

Shock-cloud interaction in the Vela SNR II. Hydrodynamic model

2006

In the framework of the study of the X-ray and optical emission in supernova remnants we focus on an isolated X-ray knot in the northern rim of the Vela SNR (Vela FilD), whose X-ray emission has been studied and discussed in Paper I. We aim at understanding the physical origin of the X-ray and optical emission in FilD, at understanding the role of the different physical processes at work, and at obtaining a key for the interpretation of future X-ray observations of SNRs. To this end we have pursued an accurate ``forward'' modeling of the interaction of the Vela SNR shock with an ISM cloud. We perform hydrodynamic simulations and we directly compare the observables synthesized from the simul…

PhysicsAstrophysics::High Energy Astrophysical PhenomenacloudsISMAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysicsThermal conductionVelaAstrophysicsSpectral lineindividual objectVela SNRISMShock wavesSupernovakinematics and dynamicsISMsupernova remnantKnot (unit)Space and Planetary ScienceThermalIntercloudHydrodynamicsISMAstrophysics::Galaxy Astrophysics
researchProduct

Multi-phase interstellar clouds in the Vela SNR resolved with XMM-Newton

2005

XMM-Newton spatial/spectral resolution and high effective area allow to deepen our knowledge about the shocks in Supernova Remnants and their interaction with the interstellar medium. We present the analysis of an EPIC observation of the northern rim of the Vela SNR and we compare the X-ray and optical morphology of the emission. We derive a description of the internal structure of the shocked interstellar clouds, arguing that the transmitted shock model is compatible with our data. We also suggest that thermal conduction between clouds and inter-cloud medium is very efficient and produces the evaporation of the clouds in the interstellar medium. � 2005 COSPAR. Published by Elsevier Ltd. Al…

PhysicsAtmospheric ScienceCommittee on Space ResearchAstrophysics::High Energy Astrophysical PhenomenaInterstellar cloudAerospace EngineeringAstronomyAstronomy and AstrophysicsAstrophysicsVelaThermal conductionNear-Earth supernovaX-rays: ISMInterstellar mediumSupernovaGeophysicsSpace and Planetary ScienceSupernova remnantGeneral Earth and Planetary SciencesVela SNRSpectral resolutionAstrophysics::Galaxy AstrophysicsAdvances in Space Research
researchProduct