Search results for "surface functionalization"
showing 8 items of 18 documents
Surface functionalization of metal-organic frameworks for improved moisture resistance
2018
Metal-organic frameworks (MOFs) are a class of porous inorganic materials with promising properties in gas storage and separation, catalysis and sensing. However, the main issue limiting their applicability is their poor stability in humid conditions. The common methods to overcome this problem involve the formation of strong metal-linker bonds by using highly charged metals, which is limited to a number of structures, the introduction of alkylic groups to the framework by post-synthetic modification (PSM) or chemical vapour deposition (CVD) to enhance overall hydrophobicity of the framework. These last two usually provoke a drastic reduction of the porosity of the material. These strategie…
Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency
2021
International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two …
From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of P…
2011
A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…
Vertically Aligned Nanowires and Quantum Dots: Promises and Results in Light Energy Harvesting
2023
The synthesis of crystals with a high surface-to-volume ratio is essential for innovative, high-performance electronic devices and sensors. The easiest way to achieve this in integrated devices with electronic circuits is through the synthesis of high-aspect-ratio nanowires aligned vertically to the substrate surface. Such surface structuring is widely employed for the fabrication of photoanodes for solar cells, either combined with semiconducting quantum dots or metal halide perovskites. In this review, we focus on wet chemistry recipes for the growth of vertically aligned nanowires and technologies for their surface functionalization with quantum dots, highlighting the procedures that yie…
Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance
2021
Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal–organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.
TiO2/Ag2O immobilized on cellulose paper: A new floating system for enhanced photocatalytic and antibacterial activities
2021
Paper-TiO2-Ag2O floating photocatalysts were produced under mild condition and their photocatalytic activity for the degradation of aromatic amine under sunlight stimulant was investigated. Characterizations by Raman, XRD, XPS, DRS and PL confirmed the presence of TiO2 and Ag2O, and the morphology of the appended TiO2/Ag2O layer was probed by FE-SEM. The photocatalytic activity of the prepared samples was investigated by the degradation of aniline (AN) in water under simulated sun-light illumination and constrained conditions, i.e. non-stirring and non-oxygenation. The presence of Ag2O combined with TiO2 was shown to improve the resistance of paper to bacteria attack, thus increasing the du…
Functionalization of mesoporous silica nanoparticles through one-pot co-condensation in w/o emulsion
2022
In this work, three different functionalized mesoporous silica nanoparticles (MSNs) were synthesized through the co-condensation synthesis in oil/water emulsion. Hexadecyltrimethoxysilane, triethoxy-3-(2-imidazolin-1-yl)propylsilane and (3-mercaptopropyl)triethoxysilane were used as organo-substituted silica precursors with variable molar ratio with respect to tetraethylorthosilicate (TEOS, 1:4, 1:9, 1:19). The occurred functionalization was investigated by Infrared Spectroscopy and FT-Raman and 29Si {1H} CP-MAS-NMR spectroscopy. Results show that the three materials were successfully functionalized. The influence of the different pendant groups and their concentration on the mesostructured…
Experimental studies on carbon nanotubes and graphene functionalized via physical adsorption with cellulose and avidin
2018
In this Thesis I have experimentally studied structural, electronic, and optical properties of hybrids of nanocarbon materials, carbon nanotubes (CNT) and graphene, and certain biomacromolecules. The latter are especially xylan, a type of hemicellulose, and avidin, an important protein. Complexes of CNT with hemicellulose are attractive because the hybrid material is soluble in water. The conductive transport properties of thin films of CNT /hemicellulose have been systematically studied with different experimental tools. These are low temperature DC conduction measurements, Kelvin probe microscopy, and optical conductivity measurements at terahertz frequencies. The results clearly indicate …