Search results for "surface plasmon"
showing 10 items of 393 documents
Plasmonic nanostructures for light trapping in thin-film solar cells
2019
Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…
Ultrastrong Coupling of Plasmons and Excitons in a Nanoshell
2014
The strong coupling regime of hybrid plasmonic-molecular systems is a subject of great interest for its potential to control and engineer light-matter interactions at the nanoscale. Recently, the so-called ultrastrong coupling regime, which is achieved when the light-matter coupling rate reaches a considerable fraction of the emitter transition frequency, has been realized in semiconductor and superconducting systems and in organic molecules embedded in planar microcavities or coupled to surface plasmons. Here we explore the possibility to achieve this regime of light-matter interaction at nanoscale dimensions. We demonstrate by accurate scattering calculations that this regime can be reach…
Plasmonic Waveguides Co-Integrated with Si3N4 Waveguide Platform for Integrated Biosensors
2019
Integration of plasmonic waveguides with low-loss photonic platforms have attracted research efforts as the means to benefit from the extra-ordinary features of plasmonics while enhancing the functional portfolio of Photonic Integrated Circuits (PICs). In this work, we review a technology platform that integrates water cladded plasmonic waveguides integrated in a low-loss Si 3 N 4 photonic platform, targeting biosensing applications. Results obtained experimentally and numerically will be presented with respect to propagation losses, interface coupling loss and accumulated phase change per unit length, showing how Surface Plasmon Polariton (SPP) waveguides can be effectively combined with p…
Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure
2020
Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle s…
Plasmon damping depends on the chemical nature of the nanoparticle interface
2019
Damping of gold nanorod plasmons by surface-adsorbed molecules is best explained by scattering off adsorbate-induced dipoles.
Novel plasmonic sensor design using plasmon-induced transparency
2010
We introduce a novel sensor concept in the field of plasmonics, namely plasmon-induced transparency sensors. These sensors combine localized particle plasmon resonances with extremely small sensing volume with excellent sharp spectral resonances that show a good respose to refractive index changes of the surrounding environment. The principle is based on the plasmonic analog of electromagnetically induced transparency (EIT) between a radiative dipole and a nonradiative quadrupole antenna. This effect yields a spectrally narrow resonance within a broad localized particle plasmon resonance in the near-infrared spectral region [1, 2]. Using deposition of biotin and streptavidin, we demonstrate…
Silicon-loaded surface plasmon polariton waveguides for nanosecond thermo-optical switching
2014
A MHz-bandwidth thermo-optical (TO) plasmonic switch operating at telecommunication wavelengths and based on a hybrid solid-state silicon-loaded surface plasmon polariton waveguide design is demonstrated numerically. The nanosecond (ns) TO response of the switch is due to the high thermal conductivities of the employed materials and we demonstrate specifically a 10 dB extinction ratio in the time-dependent switch transmission which features a pulsed 1 ns rise time followed by a 25 ns fall time when the switch is photo-thermally activated by a ns pulse at 532 nm wavelength.
Ultrastable, Uniform, Reproducible, and Highly Sensitive Bimetallic Nanoparticles as Reliable Large Scale SERS Substrates
2015
International audience; A strong interest exists in developing surface-enhanced Raman spectroscopy (SERS) substrates that uniformly enhance Raman signals of chemical and biological molecules over large scales while reaching the detection limit of trace concentrations. Even though the resonant excitation of localized surface plasmons of single or assembled metallic nanoparticles used in SERS substrates can induce large electromagnetic fields, these substrates display a SERS activity which suffers from poor reproducibility, uniformity, and stability, preventing them from being reliable for applications. In this work, we have developed self-supported large scale Ag/Au bimetallic SERS-active su…
Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy
2016
International audience; Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nano-particles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle " supermolecules " , that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diame…
CTAB Stabilizes Silver on Gold Nanorods
2020
We present a study that allows us to explain the chemical changes behind the often observed but so far ununderstood drift of the plasmon resonance of chemically prepared gold nanorods in microfluid...