Search results for "surface plasmon"

showing 10 items of 393 documents

Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication

2010

In this work we report on a method to synthesize Ag–Au nanoparticles/polymer nanocomposite patterns by UV lithography. The photoresists are based on DNQ-novolac as the polymer matrix, and Ag(I) and Au(III) salts as the nanoparticle precursors. After UV lithography, silver and gold nanoparticles are in situ synthesized inside the polymer patterns during a post bake. The resulting structured nanocomposite shows a characteristic absorbance spectrum related to the plasmon frequency of the synthesized noble metal NPs. This method represents a fast, simple and low-cost approach to the formation of extended polymer patterns with embedded silver or gold NPs. Moreover, it is a mechanism to position …

Materials scienceNanocompositePolymer nanocompositeNanoparticleNanotechnologyGeneral Chemistrylaw.inventionColloidal goldlawMaterials ChemistrySurface plasmon resonancePhotolithographyLithographyPlasmonJournal of Materials Chemistry
researchProduct

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

Dielectric-loaded plasmonic waveguide components: Going practical

2013

Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode-field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applicatio…

Materials scienceNanophotonicsOptical communicationPhysics::Optics02 engineering and technologyDielectric01 natural sciences010309 optics0103 physical sciencesPlasmonModulationbusiness.industrySurface plasmon021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsActive plasmonicsModulationSwitchingTelecommunicationsOptoelectronicsPhotonicsRouting (electronic design automation)0210 nano-technologybusiness
researchProduct

Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy

2008

International audience; Waveguiding of surface plasmon polaritons by dielectric-loaded metal structures is studied in detail by combining numerical simulations and leakage radiation microscopy. These types of waveguides are first numerically investigated using the effective index model and the differential method. We analyzed systematically the influence of the ridge width and thickness of the waveguide on the properties of the surface plasmon guided modes. In particular we investigated the confinement factor of the modes and their associated propagation lengths. These two parameters can be optimized by adjusting the thickness of the dielectric layer. Waveguides loaded with thick and thin d…

Materials scienceNanophotonicsPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPlasmonLeakage (electronics)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySurface plasmon021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurface plasmon polaritonElectronic Optical and Magnetic Materials[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessWaveguideLocalized surface plasmon
researchProduct

Surface plasmon subwavelength optics.

2003

International audience; Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons- in particular their interaction with light-can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

Materials scienceNanophotonicsPhysics::OpticsExtraordinary optical transmission02 engineering and technologyFILMS01 natural sciences010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciences2ND-HARMONIC GENERATIONPlasmonic lensLOCAL DETECTION[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Photonic crystalHOLE ARRAYSMultidisciplinarybusiness.industrySurface plasmonENERGY GAPSPlasmonic CircuitryMETALLIC NANOPARTICLES021001 nanoscience & nanotechnologySurface plasmon polaritonLIGHT TRANSMISSIONGOLD NANOPARTICLES[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicENHANCED RAMAN-SCATTERINGPHOTONIC BAND-GAP0210 nano-technologybusinessLocalized surface plasmonNature
researchProduct

Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance

2018

Measurement of small molecules in extremely dilute concentrations of analyte play an important role in different issues ranging from food industry to biological, pharmaceutical and therapeutical applications. Surface plasmon resonance (SPR) sensors can be a suitable choice for detection of small molecules based on interactions with biomolecules. However, sensitivity of the system for detection of these molecules is very low. Improving sensitivity has been a challenge for years. Therefore, different methods have been used to enhance SPR signals. The SPR signal enhancement using numerous nanomaterials has provided exciting results. Among various nanomaterials, metal nanoparticles (for instanc…

Materials scienceNanostructureBiomedical EngineeringBiophysicsNanoparticleNanotechnology02 engineering and technology01 natural sciencesSignalPhase TransitionNanomaterialsElectrochemistryAnimalsHumansNanotechnologySurface plasmon resonancechemistry.chemical_classificationBiomolecule010401 analytical chemistryProteinsEquipment DesignGeneral MedicineSurface Plasmon Resonance021001 nanoscience & nanotechnologyNanostructures0104 chemical scienceschemistryMetalsQuantum dotMagnetic nanoparticles0210 nano-technologyBiotechnologyBiosensors and Bioelectronics
researchProduct

Electron-induced limitation of surface plasmon propagation in silver nanowires

2013

Plasmonic circuitry is considered as a promising solution-effective technology for miniaturizing and integrating the next generation of optical nano-devices. A key element is the shared metal network between electrical and optical information enabling an efficient hetero-integration of an electronic control layer and a plasmonic data link. Here, we investigate to what extend surface plasmons and current-carrying electrons interfere in such a shared circuitry. By synchronously recording surface plasmon propagation and electrical output characteristics of single chemically-synthesized silver nanowires we determine the limiting factors hindering the co-propagation of electrical current and sur…

Materials scienceNanostructureFOS: Physical sciencesPhysics::OpticsBioengineering02 engineering and technologyElectron01 natural sciences[ CHIM ] Chemical SciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceElectrical and Electronic Engineering010306 general physicsNanoscopic scalePlasmonElectronic circuitCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMechanical EngineeringSurface plasmonPlasmonic CircuitryGeneral Chemistry021001 nanoscience & nanotechnologyMechanics of MaterialsOptoelectronicsElectric current0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

The Single Molecule Probe: Nanoscale Vectorial Mapping of Photonic Mode Density in a Metal Nanocavity

2009

International audience; We use superresolution single-molecule polarization and lifetime imaging to probe the local density of states (LDOS) in a metal nanocavity. Determination of the orientation of the molecular transition dipole allows us to retrieve the different LDOS behavior for parallel and perpendicular orientations with respect to the metal interfaces. For the perpendicular orientation, a strong lifetime reduction is observed for distances up to 150 nm from the cavity edge due to coupling to surface plasmon polariton modes in the metal. Contrarily, for the parallel orientation we observe lifetime variations resulting from coupling to characteristic λ/2 cavity modes. Our results are…

Materials scienceNanostructurePolymersMICROCAVITYBiophysicsMetal NanoparticlesPhysics::OpticsBioengineering02 engineering and technologyLIFETIME01 natural sciencesENHANCEMENT0103 physical sciencesMaterials TestingNanotechnologyGeneral Materials ScienceSpontaneous emission[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPhotons[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Local density of states[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsMechanical EngineeringSurface plasmonFLUORESCENCE MICROSCOPYSPONTANEOUS EMISSIONGeneral ChemistryEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)Surface plasmon polaritonCRYSTALSDipoleMicroscopy FluorescenceMetalsDensity of statesMicroscopy Electron Scanning[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyNEAR-FIELD
researchProduct

Plasmonic Core–Satellite Assemblies as Highly Sensitive Refractive Index Sensors

2015

Highly sensitive and spectrally tunable plasmonic nanostructures are of great demand for applications such as SERS and parallel biosensing. However, there is a lack of such nanostructures for the midvisible spectral regions as most available chemically stable nanostructures offer high sensitivity in the red to far red spectrum. In this work, we report the assembly of highly sensitive nanoparticle structures using a hydroxylamine mediated core–satellite assembly of 20 nm gold nanoparticle satellites onto 60 nm spherical gold cores. The average number of satellites allows tuning the plasmon resonance wavelength from 543 to 575 nm. The core–satellite nanostructures are stable in pH ranges from…

Materials scienceNanostructurebusiness.industryNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCore (optical fiber)WavelengthGeneral EnergyOptoelectronicsPhysical and Theoretical ChemistrySurface plasmon resonance0210 nano-technologybusinessBiosensorRefractive indexPlasmonThe Journal of Physical Chemistry C
researchProduct

Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires

2011

International audience; Using dual-plane leakage radiation microscopy, we investigate plasmon propagation in individual penta-twinned crystalline silver nanowires. By measuring the wavevector content of the light emitted in the substrate, we unambiguously determine the effective index and the losses of the mode propagating in these structures. The experimental results, in particular, the unexpectedly low effective index, reveal the direct influence of the nanowire crystallinity and pentagonal structure on the observed plasmon modes. By analogy with molecular orbitals of similar symmetry, the plasmon modes are also determined numerically in good agreement with the observed values. We further…

Materials scienceNanowireGeneral Physics and AstronomyPhysics::Optics02 engineering and technologySubstrate (electronics)01 natural sciencesMolecular physicsCondensed Matter::Materials ScienceOptics0103 physical sciencesMicroscopyGeneral Materials ScienceWave vectorMolecular orbital[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPlasmonbusiness.industrySurface plasmonGeneral Engineering021001 nanoscience & nanotechnology[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologybusinessLocalized surface plasmon
researchProduct