Search results for "surface plasmon"

showing 10 items of 393 documents

Efficient unidirectional nanoslit couplers for surface plasmons

2007

5 pages, 4 figures.

POLARITONSTRANSMISSIONFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyMETAL-FILMS01 natural sciencesNoise (electronics)010309 opticsOptics0103 physical sciencesEXCITATIONPolariton[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPlasmonPhysicsCoupling[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySurface plasmonBragg's lawGRATINGS021001 nanoscience & nanotechnologyRaySurface plasmon polaritonCondensed Matter - Other Condensed Matter[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessNANOHOLESOther Condensed Matter (cond-mat.other)Optics (physics.optics)GENERATIONPhysics - Optics
researchProduct

Modulation of surface plasmon coupling-in by one-dimensional surface corrugation

2008

Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been …

POLARITONSTRANSMISSIONFOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics02 engineering and technologyInterference (wave propagation)METAL-FILMS01 natural sciences0103 physical sciencesEXCITATIONPolaritonSCATTERING[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPlasmonCouplingPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Scatteringbusiness.industrySurface plasmonGRATINGS021001 nanoscience & nanotechnologyCondensed Matter - Other Condensed MatterModulation[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessNANOHOLESExcitationOther Condensed Matter (cond-mat.other)Optics (physics.optics)Physics - OpticsGENERATION
researchProduct

No Label Required: Protein Binding at Membrane Interfaces Visualized through Colloid Phase Transitions

2004

Phase transitionChemistryBilayerCell MembraneLipid BilayersSurface plasmonAnalytical chemistryMembrane ProteinsPlasma protein bindingLigandsSilicon DioxidePhase TransitionAtomic and Molecular Physics and OpticsKineticsColloidMembraneBiophysicsColloidsPhysical and Theoretical ChemistrySurface plasmon resonanceLipid bilayerProtein BindingChemPhysChem
researchProduct

Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 phot…

2013

Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO2 photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core–shell nanoparticles (Au@SiO2 NPs) and hollow silica nanoparticles with the same shell size of the core–shell nanoparticles. The Au nanoparticles were shelled by a thin SiO2 layer to produce the core–shell structure, and the SiO2 hollow spheres were made by dissolving the Au cores of the gold/silica core–shell nanoparticles. Therefore, the size and morphology of the SiO2 hollow spheres were the same as the Au@SiO2 NPs. The energy conver…

PhotocurrentMaterials scienceRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiencyNanoparticleNanotechnologyGeneral ChemistryDye-sensitized solar celllocalized surface plasmon resonanceColloidal goldgold nanoparticlessolar cellsGeneral Materials SciencenanoparticlesSurface plasmon resonanceQuasi-solidPlasmon
researchProduct

Direct measurement of optical losses in plasmon-enhanced thin silicon films (Conference Presentation)

2018

Plasmon-enhanced absorption, often considered as a promising solution for efficient light trapping in thin film silicon solar cells, suffers from pronounced optical losses i.e. parasitic absorption, which do not contribute to the obtainable photocurrent. Direct measurements of such losses are therefore essential to optimize the design of plasmonic nanostructures and supporting layers. Importantly, contributions of useful and parasitic absorption cannot be measured separately with commonly used optical spectrophotometry. In this study we apply a novel strategy consisting in a combination of photocurrent and photothermal spectroscopic techniques to experimentally quantify the trade-off betwee…

PhotocurrentMaterials scienceSiliconbusiness.industryScatteringchemistry.chemical_elementPhotothermal therapySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaSilver nanoparticlechemistryPlasmonic-enhanced light trapping Localized surface plasmon resonance Self-assemblyNanoparticles PhotovoltaicsOptoelectronicsThin filmbusinessAbsorption (electromagnetic radiation)PlasmonPlasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI
researchProduct

Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution

2016

We used online UV-VIS optical absorption and photoluminescence spectra, acquired during and after pulsed laser ablation of a Zinc plate in aqueous solution, to investigate the effect of the laser repetition rate and liquid environment on the oxidation processes of the produced nanoparticles. A transient Zn/ZnO core-shell structure was revealed by the coexistence of an absorption peak around 5.0 eV due to Zn surface plasmon resonance and of an edge at 3.4 eV coming from wurtzite ZnO. The growth kinetics of ZnO at the various repetition rates, selectively probed by the excitonic emission at 3.3 eV, began immediately at the onset of laser ablation and was largely independent of the repetition …

PhotoluminescenceAqueous solutionMaterials scienceLaser ablationAnalytical chemistryGeneral Physics and AstronomyNanoparticlechemistry.chemical_element02 engineering and technologyZinc010402 general chemistry021001 nanoscience & nanotechnologyLaserPhotochemistry01 natural sciences0104 chemical scienceslaw.inventionchemistrylawZnO nanoparticles laser ablation oxidation Photoluminescence Surface plasmon resonance In situ optical spectra Defects excitons0210 nano-technologyAbsorption (electromagnetic radiation)Wurtzite crystal structureJournal of Applied Physics
researchProduct

Oxidation of Zn nanoparticles probed by online optical spectroscopy during nanosecond pulsed laser ablation of a Zn plate in H2O

2015

We report online UV-Visible absorption and photoluminescence measurements carried out during and after pulsed laser ablation of a zinc plate in water, which clarify the events leading to the generation of ZnO nanoparticles. A transient Zn/ZnO core-shell structure is revealed by the coexistence of the resonance absorption peak around 5.0 eV due to Zn surface plasmon resonance and the edge at 3.5 eV of ZnO. The growth kinetics of ZnO, selectively probed by the exciton luminescence at 3.3 eV, begins only after a ∼30 s delay from the onset of laser ablation. We also detect the luminescence at 2.3 eV of ZnO oxygen vacancies, yet rising with an even longer delay (∼100 s). These results show that …

PhotoluminescenceMaterials scienceLaser ablationPhysics and Astronomy (miscellaneous)chemistryAnalytical chemistryNanoparticlechemistry.chemical_elementZincSurface plasmon resonanceLuminescenceAbsorption (electromagnetic radiation)SpectroscopyApplied Physics Letters
researchProduct

Plasmonic photoluminescence enhancement by silver nanowires

2015

Strong enhancement of photoluminescence is demonstrated for CdS nanocrystals and ruthenium-based dye (N719) due to localized surface plasmon resonance of silver nanowires placed on silver film. Alternative reasons for photoluminescence modulation such as mirror effect and uneven coating by dye or nanocrystals due to geometrical factors are discussed. An artifact such as carbon contamination at the surface of silver nanowires at high laser power is demonstrated and taken into consideration. Silver nanowire on silver film is proved to be an effective system for photoluminescence enhancement by localized surface plasmon resonance.

PhotoluminescenceMaterials scienceNanotechnologyengineering.materialSilver nanowiresCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCoatingNanocrystalMirror effectengineeringLaser power scalingSurface plasmon resonanceMathematical PhysicsPlasmonPhysica Scripta
researchProduct

Plasmon-induced slow aging of exciton generation and dissociation for stable organic solar cells

2016

Fast degradation is a major issue with organic photovoltaics (OPVs). Integrating plasmonics with OPVs has improved their efficiency; however, the stability effects are unknown. We demonstrate that plasmonic effects can improve the lifetime and efficiency. The aging effects on charge carrier generation and transport are investigated. Confocal time-resolved photoluminescence of Au nanoparticle (NP) doped polymer blend was performed to understand the plasmonic effects on excited-state dynamics. Hot exciton generation is observed directly at the Au-NP surface, which contributed to achieving a nearly perfect exciton dissociation yield. We found that slow aging of the plasmonic effect and the hot…

PhotoluminescenceMaterials scienceOrganic solar cellbusiness.industryExcitonPhysics::Optics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSurface plasmon polaritonAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsSolar cell efficiencyPhysics::Atomic and Molecular ClustersOptoelectronicsCharge carrierSurface plasmon resonance0210 nano-technologybusinessPlasmonOptica
researchProduct

Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains

2004

We study the ability of noble metal nanoparticle chains supporting localized surface plasmons to tailor the transmittance of channel waveguides on which they are deposited. The optical interaction between a microwaveguide ~MWG! and various arrangements of nanoparticles is first analyzed by means numerical calculations based on the Green’s tensor formalism. For specific geometries of the particle chains, the transmission spectra of the composite device ~MWG and nanoparticles! exhibits strong modulations in the optical range with the appearance of a neat band gap. The results of an experiment inspired by this theoretical study are also discussed. The photon scanning tunneling microscope image…

PhotonMaterials scienceBand gapbusiness.industryPhysics::OpticsNanoparticleCondensed Matter PhysicsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionOpticslawTransmittanceQuasiparticleOptoelectronicsScanning tunneling microscopebusinessLocalized surface plasmonPhysical Review B
researchProduct