Search results for "synapses"

showing 10 items of 183 documents

A role for TASK2 channels in the human immunological synapse.

2020

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune p…

0301 basic medicineMaleCD3 ComplexImmunological SynapsesT cellCD3T-LymphocytesImmunologyCellGene ExpressionStimulationImmunological synapseAutoimmune Diseases03 medical and health sciencesJurkat CellsMice0302 clinical medicinePotassium Channels Tandem Pore DomainCell Line TumorGene expressionmedicineExtracellularImmunology and AllergyAnimalsHumansCells CulturedKv1.3 Potassium Channelbiologyβ-tubulin ; TASK2 ; immunological synapse ; dSTORM ; T cellCell MembraneDepolarizationIntermediate-Conductance Calcium-Activated Potassium ChannelsCell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurebiology.proteinCalciumFemale030215 immunologyEuropean journal of immunologyReferences
researchProduct

Heterozygous deletion of the LRFN2 gene is associated with working memory deficits

2016

International audience; Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective w…

0301 basic medicineMaleCandidate genefamilyspeechHippocampal formationRats Sprague-Dawley0302 clinical medicineBorderline intellectual functioningNeuropsychological assessmentChilddisordersGenetics (clinical)Cells Culturedadhesion-like moleculesMembrane Glycoproteinsmedicine.diagnostic_testLearning DisabilitiesBrainMagnetic Resonance Imaging3. Good healthPedigreeMemory Short-TermBrain sizeFemaleAdultHeterozygotenmda receptorautismNerve Tissue ProteinsBiologyReceptors N-Methyl-D-AspartateArticle03 medical and health sciencesFluorodeoxyglucose F18[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyexpressionGeneticsmedicineAnimalsHumansMemory DisorderslanguageGenetic heterogeneityWorking memoryMembrane Proteinsdown-syndromeRats030104 developmental biologyEndophenotypePositron-Emission TomographySynapsesshort-termRadiopharmaceuticalsNeuroscience030217 neurology & neurosurgeryGene Deletion[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain

2020

Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set…

0301 basic medicineMaleProteomicsCerebellumAgingcerebellumProteomehippocampusstriatumHippocampusNerve Tissue ProteinsBiologyArticleSynapse03 medical and health sciences0302 clinical medicinePostsynaptic potentialsynapsemedicinesexAnimalsPrefrontal cortexlcsh:QH301-705.5prefrontal cortexSex CharacteristicsBrainGeneral Medicinemedicine.diseaseMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureGene Ontologylcsh:Biology (General)Autism spectrum disorderSchizophreniaProteomeSynapsesmass spectrometry-based proteomicsautism spectrum disorder (ASD)DDX3XFemaleNeuroscienceSET030217 neurology & neurosurgerySET ; cerebellum ; DDX3X ; striatum ; autism spectrum disorder (ASD) ; hippocampus ; synapse ; sex ; prefrontal cortexCells
researchProduct

Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations

2020

Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations…

0301 basic medicineMaleneural circuits.Patch-Clamp TechniquesGeneral Physics and AstronomyAction PotentialsHippocampal formationCell morphologySettore BIO/09 - Fisiologia0302 clinical medicineTheta Rhythmlcsh:ScienceBiophysical modelPhysicsNeurons0303 health sciencesComputational modelMultidisciplinaryBiología molecularPyramidal CellsQDynamics (mechanics)Theta oscillationsFemaleAlgorithmsScienceNeurocienciasModels NeurologicalPhase (waves)Mice TransgenicNeural circuitsGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesGlutamatergicMemory taskAnimalsComputer SimulationRats WistarCA1 Region Hippocampal030304 developmental biologyGeneral ChemistryMice Inbred C57BLKinetics030104 developmental biologySynapseslcsh:QNeuroscience030217 neurology & neurosurgeryBiophysical models
researchProduct

Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles

2019

Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now…

0301 basic medicineNervous systemCell CommunicationReviewSynaptic Transmissiontetrapartite synapseRegulatory moleculesmemorylcsh:Chemistry0302 clinical medicineCell to cell communicationSettore BIO/10 - BiochimicaSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyNeuronsDrug CarriersNeuronal PlasticitylearningBrainGeneral Medicineglial cellsComputer Science ApplicationsCrosstalk (biology)medicine.anatomical_structureNerve cellsextracellular vesiclesNeurogliavolume transmissionBiologytripartite synapsisExtracellular vesiclesCatalysisInorganic Chemistry03 medical and health sciencesNeuroplasticitymedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyMemory Disorderssynaptic plasticityOrganic Chemistryglial cellwiring transmissionBiological Transport030104 developmental biologylcsh:Biology (General)lcsh:QD1-999nervous systemAstrocytesSynapsesSynaptic plasticitytripartite synapsiextracellular vesiclesynaptic plasticity.NeuroscienceBiomarkers030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex

2017

An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this …

0301 basic medicineNervous systemCentral nervous systemApoptosisNeocortexBiologyMembrane Potentials03 medical and health sciences0302 clinical medicineNeurotrophic factorsmedicineAnimalsHumansNeuronsNeocortexGeneral Neuroscience030104 developmental biologymedicine.anatomical_structurenervous systemApoptosisCerebral cortexPeripheral nervous systemSynapsesCalciumNeuroscience030217 neurology & neurosurgeryHomeostasisNeuroscience
researchProduct

Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo.

2021

17 páginas, 7 figuras.

0301 basic medicineNeurobiologia del desenvolupamentRostral migratory streamNeurogenesisSubventricular zoneStem cellsAdult neurogenesis03 medical and health sciencesMiceOlfactory bulb0302 clinical medicineCalretininNeural Stem CellsInterneuronsmedicineAnimalsDevelopmental neurobiologyNeural stem cellsNeuronsbiologyNeurogenesisCell DifferentiationCell BiologyOlfactory BulbNeural stem cellDoublecortinCell biologyOlfactory bulb030104 developmental biologymedicine.anatomical_structurenervous systemSynapsesbiology.proteinMolecular MedicineNeuronNeuNCèl·lules mare030217 neurology & neurosurgeryDevelopmental BiologyStem cells (Dayton, Ohio)REFERENCES
researchProduct

Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4.

2018

Abstract Adolescence is a developmental period of brain maturation in which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. A different mechanism participates in adolescent brain maturation, including autophagy processes that play a role in synaptic development and plasticity. Alcohol is a neurotoxic compound whose abuse in adolescence causes TLR4 response activation by triggering neuroinflammation, neural damage and behavioral alterations. However, the potential participation of autophagy in long-term neurochemical and cognitive dysfunctions induced by binge ethanol drinking in adolescence is uncertain. We therefore evaluated whether …

0301 basic medicineNeurogenesisImmune receptorBiologyBinge Drinking03 medical and health sciencesMice0302 clinical medicineNeurochemicalAutophagyAnimalsTLR4PI3K/AKT/mTOR pathwayNeuroinflammationMice KnockoutBinge ethanol treatmentEthanolGeneral NeuroscienceAutophagyAge FactorsAdolescenceMice Inbred C57BLToll-Like Receptor 4030104 developmental biologyStructural synaptic plasticitySynaptic plasticitySynapsesExcitatory postsynaptic potentialTLR4FemaleNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory

2017

According to the synaptic trace theory of memory, activity-induced changes in the pattern of synaptic connections underlie the storage of information for long periods. In this framework, the stability of memory critically depends on the stability of the underlying synaptic connections. Surprisingly however, synaptic connections in the living brain are highly volatile, which poses a fundamental challenge to the synaptic trace theory. Here we review recent experimental evidence that link the initial formation of a memory with changes in the pattern of connectivity, but also evidence that synaptic connections are considerably volatile even in the absence of learning. Then we consider different…

0301 basic medicineNeuronal PlasticityGeneral Neuroscience[SCCO.NEUR]Cognitive science/NeuroscienceModels NeurologicalTheoretical modelsBrain03 medical and health sciences030104 developmental biology0302 clinical medicineAnti-Hebbian learningMemoryNeuroplasticityMetaplasticityNeural PathwaysSynapsesAnimalsHumansLearningPsychologyNeuroscience030217 neurology & neurosurgeryComputingMilieux_MISCELLANEOUSTrace theory
researchProduct

Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication.

2020

Synaptic transmission and plasticity are shaped by the dynamic reorganization of signaling molecules within pre- and postsynaptic compartments. The nanoscale organization of key effector molecules has been revealed by single-particle trajectory (SPT) methods. Interestingly, this nanoscale organization is highly heterogeneous. For example, presynaptic voltage-gated calcium channels (VGCCs) and postsynaptic ligand-gated ion channels such as AMPA receptors (AMPARs) are organized into so-called nanodomains where individual molecules are only transiently trapped. These pre- and postsynaptic nanodomains are characterized by a high density of molecules but differ in their molecular organization an…

0301 basic medicineNeuronsCell signalingNeuronal PlasticityVoltage-dependent calcium channelEffectorChemistryGeneral NeuroscienceAMPA receptorNeurotransmissionSynaptic Transmission03 medical and health sciencesMolecular dynamics030104 developmental biology0302 clinical medicinePostsynaptic potentialSynapsesBiophysicsHumansReceptors AMPA030217 neurology & neurosurgeryIon channelTrends in neurosciences
researchProduct