Search results for "synapsit"

showing 2 items of 2 documents

Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters

2018

Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile…

0301 basic medicineMOLECULAR-DYNAMICS SIMULATIONSBIOMOLECULAR SYSTEMSkolesteroliasetyylikoliiniSynaptic TransmissionsolukalvotCell membranechemistry.chemical_compoundSCHIZOPHRENIAmolekyylidynamiikkamolecular dynamics (MD)neurotransmissionvälittäjäaineetChemistryLIPID-MEMBRANESGeneral NeurosciencePhosphatidylserineALZHEIMERS-DISEASEMembranemedicine.anatomical_structureHAMILTONIAN REPLICA EXCHANGElipids (amino acids peptides and proteins)dopamineIntracellularneurotransmittermonosialotetrahexosylganglioside (GM1)Synaptic cleftG(M1) GangliosideMolecular Dynamics SimulationNeurotransmission03 medical and health sciencesExtracellularmedicineAnimalsmonosialotetrahexosylgangliosidebinding free energyPhosphatidylglyceroldopamiiniBinding SitesCell Membranehistamiini3112 Neurosciencesta1182cholesterolBILAYERhistamineacetylcholinehermosolut030104 developmental biologyFORCE-FIELDBiophysicssynapsit
researchProduct

A Perspective : Active Role of Lipids in Neurotransmitter Dynamics

2019

AbstractSynaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a m…

0301 basic medicinesynaptic neurotransmissionSynaptic cleftNeuroscience (miscellaneous)NeurotransmissionlipiditSynaptic vesicleSynaptic TransmissionSynaptic neurotransmissionArticlesolukalvotmembrane lipid composition (MLC)03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSynaptic receptormembrane-based sortingAnimalsHumansmolekyylidynamiikkaNeurotransmittermolecular dynamics (MD)Binding siteNeurotransmitterReceptorvälittäjäaineetIon channelNeurotransmitter AgentsmolekyylineurologiaMembrane lipid composition (MLC)Molecular dynamics (MD)Lipid MetabolismLipids030104 developmental biologyNeurologychemistrySynapsesBiophysicsSynaptic VesiclessynapsitMembrane-based sorting030217 neurology & neurosurgeryFunction (biology)neurotransmittersynaptic receptor
researchProduct