Search results for "täpläsiilikäs"
showing 10 items of 26 documents
Many forms of the wood tiger moth (Parasemia plantaginis) : selective heterogeneity favours polymorphic warning signals
2013
De novo Synthesis of Chemical Defenses in an Aposematic Moth
2018
Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (Arctia plantaginis, Linnaeus, 1758) is a well-studied aposematic species, but the nature of its chemical defenses has not been fully described . Here, we report the presence of two methoxypyrazines, 2-sec-butyl-3-methoxypyrazine and 2-isobutyl-3-methoxypyrazine, in the moths’ defensive secretions. By raising larvae on an artificial diet, we confir…
Population genetic structure of aposematic alpine wood tiger moths (Parasemia plantaginis)
2012
Alpine landscape with natural fragmentation restricts gene flow among populations and causes spatio-genetic structuring (high genetic differentiation) in species living there. Consequently, alpine habitat fragmentation and dispersal barriers should make isolated populations such as wood tiger moth (Parasemia plantaginis) populations prone to lose genetic diversity by local adaptation and fixation of fittest phenotype in each local population. This species is also known to be aposematic. Yellow colour on the males’ hind wings in wood tiger moth is presumed to work more efficiently against visual hunting predators due to increased conspicuousness. In addition, in field experiments with wood t…
Testing the effectiveness of pyrazine defences against spiders
2020
Insects live in a dangerous world and may fall prey to a wide variety of predators, encompassing multiple taxa. As a result, selection may favour defences that are effective against multiple predator types, or target-specific defences that can reduce predation risk from particular groups of predators. Given the variation in sensory systems and hunting tactics, in particular between vertebrate and invertebrate predators, it is not always clear whether defences, such as chemical defences, that are effective against one group will be so against another. Despite this, the majority of research to date has focused on the role of a single predator species when considering the evolution of defended…
Not just the sum of its parts : Geographic variation and nonadditive effects of pyrazines in the chemical defence of an aposematic moth
2022
Chemical defences often vary within and between populations both in quantity and quality, which is puzzling if prey survival is dependent on the strength of the defence. We investigated the within- and between-population variability in chemical defence of the wood tiger moth (Arctia plantaginis). The major components of its defences, SBMP (2-sec-butyl-3-methoxypyrazine) and IBMP (2-isobutyl-3-methoxypyrazine), are volatiles that deter bird attacks. We hypothesized that (1) variation in the chemical defences of male wood tiger moths reflects the local predation pressure; (2) observed differences in quantity and quality of defence among populations have a genetic basis; and (3) increasing con…
Colour alone matters : no predator generalization among morphs of an aposematic moth
2018
Local warning colour polymorphism, frequently observed in aposematic organisms, is evolutionarily puzzling. This is because variation in aposematic signals is expected to be selected against due to predators' difficulties associating several signals with a given unprofitable prey. One possible explanation for the existence of such variation is predator generalization, which occurs when predators learn to avoid one form and consequently avoid other sufficiently similar forms, relaxing selection for monomorphic signals. We tested this hypothesis by exposing the three different colour morphs of the aposematic wood tiger moth, Arctia plantaginis, existing in Finland to local wild-caught predato…
The price of safety: food deprivation in early life influences the efficacy of chemical defence in an aposematic moth
2018
Aposematism is the combination of a primary signal with a secondary defence that predators must learn to associate with one another. However, variation in the level of defence, both within and between species, is very common. As secondary defences influence individual fitness, this variation in quality and quantity requires an evolutionary explanation, particularly as it may or may not correlate with variation in primary signals. The costs of defence production are expected to play a considerable role in generating this variation, yet studies of the cost of chemical defence have focused on species that sequester their defences, while studies in species that produce them de novo are scarce. …
An aposematic colour‐polymorphic moth seen through the eyes of conspecifics and predators – Sensitivity and colour discrimination in a tiger moth
2018
Although predation is commonly thought to exert the strongest selective pressure on coloration in aposematic species, sexual selection may also influence coloration. Specifically, polymorphism in aposematic species cannot be explained by natural selection alone. Males of the aposematic wood tiger moth (Arctia plantaginis) are polymorphic for hindwing coloration throughout most of their range. In Scandinavia, they display either white or yellow hindwings. Female hindwing coloration varies continuously from bright orange to red. Redder females and yellow males suffer least from bird predation. White males often have higher mating success than yellow males. Therefore, we ask whether females ca…
Multimodal Aposematic Defenses Through the Predation Sequence
2021
Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with a…
Safety in Numbers: How Color Morph Frequency Affects Predation Risk in an Aposematic Moth
2021
Polymorphic warning signals in aposematic systems are enigmatic because predator learning should favor the most common form, creating positive frequency-dependent survival. However, many populations exhibit variation in warning signals. There are various selective mechanisms that can counter positive frequency-dependent selection and lead to temporal or spatial warning signal diversification. Examining these mechanisms and their effects requires first confirming whether the most common morphs are favored at both local and regional scales. Empirical examples of this are uncommon and often include potentially confounding factors, such as a lack of knowledge of predator identity and behavior. …