Search results for "ta111"

showing 10 items of 251 documents

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Geometry and analysis of Dirichlet forms (II)

2014

Abstract Given a regular, strongly local Dirichlet form E , under assumption that the lower bound of the Ricci curvature of Bakry–Emery, the local doubling and local Poincare inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of E coincide; (ii) the Cheeger energy functional Ch d E is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio–Gigli–Savare to be bounded from below. This together with some recent results of Ambrosio–Gigli–Savare yields that the heat flow gives a gradient flow of Boltzman–Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada's duality …

Dirichlet formta111Mathematical analysisGeometryCurvatureUpper and lower boundsDirichlet distributionsymbols.namesakeBounded functionsymbolsMathematics::Metric GeometryMathematics::Differential GeometryAnalysisRicci curvatureEnergy functionalScalar curvatureMathematicsJournal of Functional Analysis
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

A function whose graph has positive doubling measure

2014

We show that a doubling measure on the plane can give positive measure to the graph of a continuous function. This answers a question by Wang, Wen and Wen. Moreover we show that the doubling constant of the measure can be chosen to be arbitrarily close to the doubling constant of the Lebesgue measure.

Discrete mathematics28A12 (Primary) 30L10 (Secondary)Lebesgue measureApplied MathematicsGeneral Mathematicsta111thin setThin setMathematics - Classical Analysis and ODEsfat setdoubling measureClassical Analysis and ODEs (math.CA)FOS: MathematicsGraph (abstract data type)Computer Science::DatabasesMathematicsProceedings of the American Mathematical Society
researchProduct

Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)

2018

A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsta111Semi-locally simply connectedHarmonic (mathematics)01 natural sciences010101 applied mathematicsfunktioteoriap-harmonic equationSimply connected spaceharmonic mappingsmonotone mappings0101 mathematicsCauchy's integral theoremfunktionaalianalyysiSimply connected at infinityMathematicsTransactions of the American Mathematical Society
researchProduct

Dimensions of random affine code tree fractals

2014

We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.

Discrete mathematicsCode (set theory)v-variable fractalsApplied MathematicsGeneral MathematicsProbability (math.PR)ta111Dynamical Systems (math.DS)self-similar setsTree (descriptive set theory)Box countingFractalIterated function systemMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 60D05 37H99RandomnessMathematics - ProbabilityMathematics
researchProduct

Finitely randomized dyadic systems and BMO on metric measure spaces

2015

Abstract We study the connection between BMO and dyadic BMO in metric measure spaces using finitely randomized dyadic systems, and give a Garnett–Jones type proof for a theorem of Uchiyama on a construction of certain BMO functions. We obtain a relation between the BMO norm of a suitable expectation over dyadic systems and the dyadic BMO norms of the original functions in different systems. The expectation is taken over only finitely randomized dyadic systems to overcome certain measurability questions. Applying our result, we derive Uchiyama’s theorem from its dyadic counterpart, which we also prove.

Discrete mathematicsMathematics::Functional AnalysisDyadic cubeApplied Mathematicsta111Mathematics::Analysis of PDEsMathematics::Classical Analysis and ODEsMetric measure spaceBounded mean oscillationQuantitative Biology::OtherBounded mean oscillationRandomized dyadic systemMetric spaceNorm (mathematics)Dyadic BMOAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets

2013

We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)General Mathematicsmetric area formulata111Mathematics::Analysis of PDEsCarnot groupBanach homogeneous groupsalmost everywhere differentiabilityRadon-Nikodym propertyLipschitz continuityRadon–Nikodym theoremBanach homogeneous groups; metric area formula; almost everywhere differentiability; Radon-Nikodym propertyMetric (mathematics)Homogeneous groupMathematics::Metric GeometryAlmost everywhereDifferentiable functionMathematics
researchProduct

The p-Laplacian with respect to measures

2013

We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.

Discrete mathematicsPure mathematicsApplied Mathematicsta111Mathematics::Algebraic Topology35J92 35P30 35D99 35B65Mathematics - Analysis of PDEsAnalysis on fractalsp-LaplacianFOS: MathematicsEmbeddingLaplace operatorAnalysisMathematicsAnalysis of PDEs (math.AP)Journal of mathematical analysis and applications
researchProduct

On the continuity of discrete maximal operators in Sobolev spaces

2014

We investigate the continuity of discrete maximal operators in Sobolev space W 1;p (R n ). A counterexample is given as well as it is shown that the continuity follows under certain sucient assumptions. Especially, our research verifies that for the continuity in Sobolev spaces the role of the partition of the unity used in the construction of the maximal operator is very delicate.

Discrete mathematicsSobolev spaceGeneral Mathematicsta111Maximal operatorPartition (number theory)Modulus of continuityCounterexampleSobolev inequalitySobolev spaces for planar domainsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct