Search results for "ta112"
showing 10 items of 69 documents
Blind Source Separation Based on Joint Diagonalization in R: The Packages JADE and BSSasymp
2017
Blind source separation (BSS) is a well-known signal processing tool which is used to solve practical data analysis problems in various fields of science. In BSS, we assume that the observed data consists of linear mixtures of latent variables. The mixing system and the distributions of the latent variables are unknown. The aim is to find an estimate of an unmixing matrix which then transforms the observed data back to latent sources. In this paper we present the R packages JADE and BSSasymp. The package JADE offers several BSS methods which are based on joint diagonalization. Package BSSasymp contains functions for computing the asymptotic covariance matrices as well as their data-based es…
Olley–Pakes productivity decomposition: computation and inference
2016
Summary We show how a moment-based estimation procedure can be used to compute point estimates and standard errors for the two components of the widely used Olley–Pakes decomposition of aggregate (weighted average) productivity. When applied to business level microdata, the procedure allows for autocovariance and heteroscedasticity robust inference and hypothesis testing about, for example, the coevolution of the productivity components in different groups of firms. We provide an application to Finnish firm level data and find that formal statistical inference casts doubt on the conclusions that one might draw on the basis of a visual inspection of the components of the decomposition.
Identifying Causal Effects with the R Package causaleffect
2017
Do-calculus is concerned with estimating the interventional distribution of an action from the observed joint probability distribution of the variables in a given causal structure. All identifiable causal effects can be derived using the rules of do-calculus, but the rules themselves do not give any direct indication whether the effect in question is identifiable or not. Shpitser and Pearl constructed an algorithm for identifying joint interventional distributions in causal models, which contain unobserved variables and induce directed acyclic graphs. This algorithm can be seen as a repeated application of the rules of do-calculus and known properties of probabilities, and it ultimately eit…
Bayesian models for data missing not at random in health examination surveys
2018
In epidemiological surveys, data missing not at random (MNAR) due to survey nonresponse may potentially lead to a bias in the risk factor estimates. We propose an approach based on Bayesian data augmentation and survival modelling to reduce the nonresponse bias. The approach requires additional information based on follow-up data. We present a case study of smoking prevalence using FINRISK data collected between 1972 and 2007 with a follow-up to the end of 2012 and compare it to other commonly applied missing at random (MAR) imputation approaches. A simulation experiment is carried out to study the validity of the approaches. Our approach appears to reduce the nonresponse bias substantially…
Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range
2014
A Bayesian solution is suggested for the modelling of spatial point patterns with inhomogeneous hard-core radius using Gaussian processes in the regularization. The key observation is that a straightforward use of the finite Gibbs hard-core process likelihood together with a log-Gaussian random field prior does not work without penalisation towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood is used. This approach to hard-core inhomogeneity is an alternative to the transformation inhomogeneous hard-core modelling. The computations are based on recent Markovian approximation results for Gaussian fields. As an application, data on the nest locations of Sa…
A more efficient second order blind identification method for separation of uncorrelated stationary time series
2016
The classical second order source separation methods use approximate joint diagonalization of autocovariance matrices with several lags to estimate the unmixing matrix. Based on recent asymptotic results, we propose a novel unmixing matrix estimator which selects the best lag set from a finite set of candidate sets specified by the user. The theory is illustrated by a simulation study.
Deflation-based separation of uncorrelated stationary time series
2014
In this paper we assume that the observed pp time series are linear combinations of pp latent uncorrelated weakly stationary time series. The problem is then to find an estimate for an unmixing matrix that transforms the observed time series back to uncorrelated time series. The so called SOBI (Second Order Blind Identification) estimate aims at a joint diagonalization of the covariance matrix and several autocovariance matrices with varying lags. In this paper, we propose a novel procedure that extracts the latent time series one by one. The limiting distribution of this deflation-based SOBI is found under general conditions, and we show how the results can be used for the comparison of es…
A nonstationary cylinder-based model describing group dispersal in a fragmented habitat
2014
International audience; A doubly nonstationary cylinder-based model is built to describe the dispersal of a population from a point source. In this model, each cylinder represents a fraction of the population, i.e., a group. Two contexts are considered: The dispersal can occur in a uniform habitat or in a fragmented habitat described by a conditional Boolean model. After the construction of the models, we investigate their properties: the first and second order moments, the probability that the population vanishes, and the distribution of the spatial extent of the population.
An Adaptive Parallel Tempering Algorithm
2013
Parallel tempering is a generic Markov chainMonteCarlo samplingmethod which allows good mixing with multimodal target distributions, where conventionalMetropolis- Hastings algorithms often fail. The mixing properties of the sampler depend strongly on the choice of tuning parameters, such as the temperature schedule and the proposal distribution used for local exploration. We propose an adaptive algorithm with fixed number of temperatures which tunes both the temperature schedule and the parameters of the random-walk Metropolis kernel automatically. We prove the convergence of the adaptation and a strong law of large numbers for the algorithm under general conditions. We also prove as a side…
On the stability and ergodicity of adaptive scaling Metropolis algorithms
2011
The stability and ergodicity properties of two adaptive random walk Metropolis algorithms are considered. The both algorithms adjust the scaling of the proposal distribution continuously based on the observed acceptance probability. Unlike the previously proposed forms of the algorithms, the adapted scaling parameter is not constrained within a predefined compact interval. The first algorithm is based on scale adaptation only, while the second one incorporates also covariance adaptation. A strong law of large numbers is shown to hold assuming that the target density is smooth enough and has either compact support or super-exponentially decaying tails.