Search results for "technologies"

showing 10 items of 2976 documents

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

2019

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

010504 meteorology & atmospheric sciencesComputer scienceEconomicsGround spectrometersScience0211 other engineering and technologiesContext (language use)02 engineering and technologyGround spectrometer01 natural sciencesSpectral lineRetrieval methodApproximation errorSun-induced chlorophyll fluorescenceSensitivity (control systems)910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRetrieval methodsSpectrometerSun-induced chlorophyll fluorescence; Ground spectrometers; Retrieval methods1900 General Earth and Planetary SciencesQHyperspectral imagingsun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods3. Good health10122 Institute of GeographyFISICA APLICADALine (geometry)General Earth and Planetary Sciencesddc:620Interpolation
researchProduct

Automatic emulator and optimized look-up table generation for radiative transfer models

2017

This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)0211 other engineering and technologiesAtmospheric correctionSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeKernel (statistics)Lookup tableRadiative transfersymbolsGaussian process emulatorGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpolation2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …

2011

International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…

010504 meteorology & atmospheric sciencesComputer scienceGaussian0211 other engineering and technologiesSoil ScienceCANOPY BIOPHYSICAL CHARACTERISTICS02 engineering and technologyNEURAL NETWORK01 natural sciencesTransfer functionsymbols.namesakeAtmospheric radiative transfer codesRadiative transferRange (statistics)Sensitivity (control systems)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingArtificial neural networkGeologySigmoid functionRELATION SOL-PLANTE-ATMOSPHEREMODEL INVERSION[SDE]Environmental SciencessymbolsINDICE FOLIAIRE
researchProduct

Cloud detection on the Google Earth engine platform

2017

The vast amount of data acquired by current high resolution Earth observation satellites implies some technical challenges to be faced. Google Earth Engine (GEE) platform provides a framework for the development of algorithms and products built over this data in an easy and scalable manner. In this paper, we take advantage of the GEE platform capabilities to exploit the wealth of information in the temporal dimension by processing a long time series of satellite images. A cloud detection algorithm for Landsat-8, which uses previous images of the same location to detect clouds, is implemented and tested on the GEE platform.

010504 meteorology & atmospheric sciencesComputer scienceReal-time computingScalability0211 other engineering and technologiesCloud detectionSatellite02 engineering and technologyDimension (data warehouse)Earth observation satellite01 natural sciences021101 geological & geomatics engineering0105 earth and related environmental sciences2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture

2013

Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…

010504 meteorology & atmospheric sciencesComputer scienceScienceta11710211 other engineering and technologiesPoint cloudStereoscopyradiometry02 engineering and technologyphotogrammetry01 natural scienceslaw.inventionspectrometryradiometriamaatalouslawbiomassa (teollisuus)photogrammetry; radiometry; spectrometry; hyperspectral; UAV; DSM; point cloud; biomass; agriculturefotogrammetriaagriculture021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingta1132. Zero hungerbiomassuavQHyperspectral imagingta4111photogrammetriaReflectivityhyperspektridsmInterferometryspektrometriahyperspectralPhotogrammetry13. Climate actionRemote sensing (archaeology)GeoreferenceGeneral Earth and Planetary SciencesRadiometrypistepilviPrecision agriculturepoint cloudRemote Sensing
researchProduct

Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2017

Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…

010504 meteorology & atmospheric sciencesComputer scienceUAV0211 other engineering and technologiesPoint cloudta117102 engineering and technologyradiometryphotogrammetry01 natural sciencesforestComputer visionForestRadiometrylcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingfotogrammetriata113UAV; hyperspectral; photogrammetry; radiometry; point cloud; forest; classificationluokitus (toiminta)ta114business.industryHyperspectral imaging15. Life on landOtaNanoClassificationRandom forestPoint cloudTree (data structure)PhotogrammetryhyperspectralHyperspectralclassification13. Climate actionMultilayer perceptronPhotogrammetryGeneral Earth and Planetary SciencesRadiometryRGB color modellcsh:QArtificial intelligencebusinesspoint cloudRemote Sensing; Volume 9; Issue 3; Pages: 185
researchProduct

Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses

2020

The use of unmanned aerial vehicles (UAVs) in earth science research has drastically increased during the last decade. The reason being innumerable advantages to detecting and monitoring various environmental processes before and after certain events such as rain, wind, flood, etc. or to assess the current status of specific landforms such as gullies, rills, or ravines. The UAV equipped sensors are a key part to success. Besides commonly used sensors such as cameras, radar sensors are another possibility. They are less known for this application, but already well established in research. A vast number of research projects use professional radars, but they are expensive and difficult to hand…

010504 meteorology & atmospheric sciencesComputer scienceUAVReal-time computingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesComputerApplications_COMPUTERSINOTHERSYSTEMS77 GHz02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistryArticleAnalytical Chemistrylaw.inventionARS-408lawlcsh:TP1-1185ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic EngineeringRadarInstrumentationARS-404021101 geological & geomatics engineering0105 earth and related environmental sciencesRadarAtomic and Molecular Physics and OpticsEarth surfaceAutomotive radarKey (cryptography)Sensors
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct