Search results for "technologies"

showing 10 items of 2976 documents

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

2015

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

010504 meteorology & atmospheric sciencesMeteorologyGeography Planning and Development0211 other engineering and technologiesData validationlcsh:G1-92202 engineering and technology01 natural sciencesVineyardSoil roughnessFootprintEarth and Planetary Sciences (miscellaneous)Vegetation optical depth14. Life underwaterPrecipitationWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRadiometerHumedad del suelobrightness temperature ELBARA-II L-MEB SMOS SMOS level 3 data soil moisture soil roughness Valencia Anchor Station vegetation optical depth15. Life on landEspesor óptico de la vegetaciónTerm (time)GeographyL-MEB13. Climate actionBrightness temperatureRugosidad del sueloTemperatura de brilloSoil moistureBrightness temperaturelcsh:Geography (General)
researchProduct

NPP VIIRS land surface temperature product validation using worldwide observation networks.

2013

International audience; Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. This work presents validation methodologies to estimate the quantitative uncertainty in Land Surface Temperature (LST) product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) using ground-based measurements currently made operationally at many field and weather stations around the world. Over heterogeneous surfaces in terms of surface types or biophysical properties (e.g., vegetation density, emissivity), the validation protocol accounts for land s…

010504 meteorology & atmospheric sciencesMeteorologyLand surface temperature0211 other engineering and technologies02 engineering and technology01 natural sciencesIndex Terms— Land Surface TemperaturePhysics::Geophysics[SDU] Sciences of the Universe [physics]EmissivityProduct (category theory)ComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingvalidationThermal infraredRadiometerspatial heterogeneityVegetationNPP VIIRS13. Climate actionground-based LST[SDU]Sciences of the Universe [physics][SDE]Environmental SciencesEnvironmental scienceSatelliteSpatial variability
researchProduct

Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

2016

Land Surface Temperature (LST) as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same obser…

010504 meteorology & atmospheric sciencesMeteorologyLandsat 7Science0211 other engineering and technologiesland surface temperatureTerrain02 engineering and technology01 natural sciencesNet radiometertime-space variabilityTermodinàmicaSuperfícies (Fisica)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingGround truthRadiometerQSubpixel renderingsurface heterogeneitysurface heterogeneity; land surface temperature; MODIS; Landsat 7; time-space variability; ground truthMODISGeneral Earth and Planetary SciencesEnvironmental scienceSpatial variabilityModerate-resolution imaging spectroradiometerScale (map)ground truthRemote Sensing
researchProduct

Evaluation of the MODIS Albedo product over a heterogeneous agricultural area

2013

In this article, the Moderate Resolution Imaging Spectroradiometer MODIS Bidirectional Reflectance Distribution Function BRDF/Albedo product MCD43 is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction EODIX project campaign, which was developed in Barrax Spain in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal RTLSR which corresponds to the MODIS BRDF algorithm and the RossThick-Maignan-LiSparse-Reciprocal RTLSR-HS, were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner AHS sensor. During the campaign, airborne im…

010504 meteorology & atmospheric sciencesMeteorologyPixel0211 other engineering and technologiesHyperspectral imaging02 engineering and technologyAlbedo01 natural sciencesGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteSatellite imageryModerate-resolution imaging spectroradiometerBidirectional reflectance distribution functionZenith021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInternational Journal of Remote Sensing
researchProduct

A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data

2017

Abstract To determine aerosol optical thickness, AOT, and other geophysical parameters describing conditions in the atmosphere and at the earth's surface by inversion of remote sensing measurements from space based instrumentation, it is necessary to separate ground scenes into cloud free and cloudy or cloud contaminated. Identifying the presence of cloud in a ground scene and establishing an accurate and adequate cloud mask is a challenging task. In this study, measurements by the European Space Agency (ESA) MEdium Resolution Imaging Spectrometer (MERIS) have been used to develop a cloud identification and cloud mask algorithm for preprocessing prior to application of the new algorithm cal…

010504 meteorology & atmospheric sciencesMeteorologySYNOPbusiness.industryCloud topCloud fraction0211 other engineering and technologiesSoil ScienceGeologyCloud computing02 engineering and technology01 natural sciencesSCIAMACHYLidarCloud heightRadianceEnvironmental scienceComputers in Earth SciencesbusinessAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products

2018

The main goal of this paper is to derive a method for a daily gross primary production (GPP) product over Europe and Africa taking the full advantage of the SEVIRI/MSG satellite products from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors delivered from the Satellite Application Facility for Land Surface Analysis (LSA SAF) system. Special attention is paid to model the daily GPP response from an optimized Montheith's light use efficiency model under dry conditions by controlling water shortage limitations from the actual evapotranspiration and the potential evapotranspiration (PET). The PET was parameterized using the mean daily air temperatur…

010504 meteorology & atmospheric sciencesMeteorologySettore AGR/05 - ASSESTAMENTO FORESTALE E SELVICOLTURAWater stressBiome0211 other engineering and technologiesEddy covarianceDaily02 engineering and technologyManagement Monitoring Policy and LawAtmospheric sciences01 natural sciencesLight-Use EfficiencyEvapotranspirationComputers in Earth SciencesMSG021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesGlobal and Planetary ChangeConsistency analysisRelative biasPrimary production15. Life on landGeographyPhysical Geography13. Climate actionLSA SAFForest vegetationSatelliteLight-use efficiencyGPP
researchProduct

A multisensor fusion approach to improve LAI time series

2011

International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …

010504 meteorology & atmospheric sciencesMeteorologytélédétectionsatellite0211 other engineering and technologiesSoil Scienceréseau neuronal02 engineering and technology01 natural sciencessuivi de culturesInstrumentation (computer programming)Computers in Earth SciencesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingVegetationGeologyVegetationData fusionLAI time seriesSensor fusionMissing dataLAI time series;Vegetation;Modis;Temporal smoothing;Gap filling;Data fusionqualité des données13. Climate actionAutre (Sciences de l'ingénieur)Gap filling[SDE]Environmental SciencesEnvironmental scienceSatelliteModisTemporal smoothingScale (map)Smoothing
researchProduct

Evaluation of quasi-geoid model based on astrogeodetic measurements: case of Latvia

2021

Abstract Since the development of GNSS techniques, the determination of a precise quasi-geoid model has become even more actual. In terms of this project the staff of the Institute of Geodesy and Geoinformatics (GGI) has developed a new quasi-geoid model based on DFHRS (Digital Finite-element Height Reference Surface) approach additionally using astrogeodetic measurements – vertical deflections (VD), which can be observed by a Digital zenith camera. This paper evaluates a quasi-geoid model results based on vertical deflections, as a study area using the territory of Latvia: the standard deviation of the solution is equal to 0.006 m with observation residuals after the adjustment of minimum …

010504 meteorology & atmospheric sciencesModeling and SimulationGeoid0211 other engineering and technologiesEarth and Planetary Sciences (miscellaneous)02 engineering and technologyGeodesy01 natural sciencesEngineering (miscellaneous)Geology021101 geological & geomatics engineering0105 earth and related environmental sciencesJournal of Applied Geodesy
researchProduct

2018

The Radar Vegetation Index (RVI) is a well-established microwave metric of vegetation cover. The index utilizes measured linear scattering intensities from co- and cross-polarization and is normalized to ideally range from 0 to 1, increasing with vegetation cover. At long wavelengths (L-band) microwave scattering does not only contain information coming from vegetation scattering, but also from soil scattering (moisture & roughness) and therefore the standard formulation of RVI needs to be revised. Using global level SMAP L-band radar data, we illustrate that RVI runs up to 1.2, due to the pre-factor in the standard formulation not being adjusted to the scattering mechanisms at these lo…

010504 meteorology & atmospheric sciencesMoistureScattering0211 other engineering and technologiesPolarimetry02 engineering and technology15. Life on land01 natural scienceslaw.inventionlawSurface roughnessmedicineGeneral Earth and Planetary SciencesLeaf area indexRadarmedicine.symptomVegetation (pathology)Water content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing
researchProduct

2019

The HyPlant imaging spectrometer is a high-performance airborne instrument consisting of two sensor modules. The DUAL module records hyperspectral data in the spectral range from 400–2500 nm, which is useful to derive biochemical and structural plant properties. In parallel, the FLUO module acquires data in the red and near infrared range (670–780 nm), with a distinctly higher spectral sampling interval and finer spectral resolution. The technical specifications of HyPlant FLUO allow for the retrieval of sun-induced chlorophyll fluorescence (SIF), a small signal emitted by plants, which is directly linked to their photosynthetic efficiency. The combined use of both HyPlant modules opens up …

010504 meteorology & atmospheric sciencesNear-infrared spectroscopy0211 other engineering and technologiesImaging spectrometerHyperspectral imaging02 engineering and technology01 natural sciencesSignalDual moduleCalibrationRadianceGeneral Earth and Planetary SciencesEnvironmental scienceSpectral resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing
researchProduct