Search results for "tellurite"
showing 10 items of 16 documents
Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles
2017
Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have att…
Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1
2018
AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…
Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions
2016
Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …
Mid-infrared supercontinuum generation in chalcogenide and telluride fibers for sensor devices
2019
This thesis reports on the progress made during my PhD concerning supercontinuum generation and its application in two types of materials: chalcogenide and tellurite glasses. Concerning the chalcogenide axis, two new arsenic-free compositions are developed: Ge20Se60Te20 and Ge20Se70Te10. Thermal and optical properties of these two glasses are studied and two types of fibers are manufactured: a step-index fiber and a suspended core fiber. The generation of supercontinuum in these two fibres, pumped by an optical parametric amplifier, gives competitive results compared to the current state of the art of supercontinuum generation in chalcogenide fibres. Supercontinuums widening between 2 and 1…
Supercontinuum Generation in Tellurite Optical Fibers
2017
This chapter presents a state of the art of infrared supercontinuum generation in heavy oxide tellurite optical fibers from the experimental results published by the international community. As a first part, a bibliographic table gathers the literature on which this work is based. Then, the second part briefly returns on the tellurite glass compositions, the third part presents the different fiber structures (microstructured, suspended core or step-index fibers, tapered fibers), the fourth part discusses the pumping sources in relation with the fiber chromatic dispersion as well as coupling issues, the supercontinuum performances are presented in the fifth part, and the sixth part deals wit…
Investigation of the Na2O/Ag2O ratio on the synthesis conditions and properties of the 80TeO2–10ZnO–[(10−x)Na2O–xAg2O] glasses
2019
International audience; Properties of the tellurite glasses 80TeO2–10ZnO–[(10−x)Na2O–xAg2O] are investigated as a function of the substitution ratio x between Na2O and Ag2O. One observe that the variation of glass transition temperature decreases monotonously with x and that surface crystallization mechanism is favored. The assignment of the Raman bands and their relation with the underlying glass structure is discussed. While both Na2O and Ag2O oxides act as glass network modifiers, their progressive equimolar substitution does not lead to a meaningful evolution in the structure of the TZ[Na10-xAgx] glass. The refractive index and the cut-off wavelength are found to increase with x. The co…
Study of new tellurite glasses in the TeO2-ZnO-La2O3 (TZL) system for the manufacturing of mid-infrared multimaterial optical fibers and specialty op…
2023
This thesis work was carried out using tellurite glasses from the TeO2-ZnO-La2O3 (TZL) ternary diagram for optical fibers manufacturing. The choice to use this system is motivated by the ambition to improve the transmission of optical signals within oxide glasses for which absorption bands related to OH groups are present in the transparency window. A structural study is first carried out on these glasses by Raman spectroscopy in order to understand the influence of the composition on physicochemical properties (especially on optical and thermal properties) but also to estimate the ability of a vitreous matrix to reorganize when subjected to a thermal solicitation such as the preform-to-fib…
Mid-IR Fibres from Various Soft Glasses for Wide Band Sources
2013
Optical fibres from various soft glasses (tellurite, sulphide…) are designed, drawn and characterized with the purpose of light generation, through non linear effects, on a wide infrared band, targeting a 1-5 µm continuum source.
Suspended core tellurite glass optical fibers for infrared supercontinuum generation
2011
International audience; We report the fabrication and characterization of tellurite TeO(2)-ZnO-Na(2)O (TZN) microstructured suspended core optical fibers (MOFs). These fibers are designed for infrared supercontinuum generation with zero dispersion wavelength (ZDW) at 1.451 mu m. The measured losses at this wavelength are approximately 6 dB/m for a MOF with a 2.2 mu m diameter core. The effective area of a particular fiber is 3.5 mu m(2) and the nonlinear coefficient is calculated to be 437 W(-1)km(-1). By pumping a 20 cm long fiber at 1.56 mu m with a sub-nj femtosecond laser source, we generate a supercontinuum (SC) spanning over 800 nm in the 1-2 mu m wavelength range.
Tellurites fibers for infrared supercontinuum sources : opto-geometric profiles and extrinsic absorptions management
2016
This PhD thesis work focuses on the synthesis and purification of vitreous materials used for the development of waveguides with varied profiles, dedicated to supercontinuum (SC) generation between 1 and 5 μm.Concerning the purification of tellurite glasses, several leads were followed, but best results are obtained for the purification of the TeO2-ZnO-Na2O glassy system by the means of zinc fluoride. Attenuation measurements performed on several meter-long single-index fiber samples reveal the nearly complete elimination of water-related absorptions between 3 and 4 μm (OH ions concentration lower than 1 ppm mass.). Such water-purified glasses were firstly dedicated to microstructured optic…