Search results for "temi"

showing 10 items of 3194 documents

Magnetic field-assisted single-point incremental forming with a magnet ball tool

2021

Abstract This paper describes magnetic field-assisted single-point incremental forming (M-SPIF) with a Nd-Fe-B magnet ball tool. In M-SPIF, the tool driven by magnetic force plastically deforms a sheet. The polarity of the magnet tool helps to make the magnetic force (i.e., forming force) more controllable. In creating a truncated cone, the direction of the magnetic force gradually points more outward as the process progresses, and material is forced outwards from the cone center, increasing thinning in M-SPIF, while the cone center remains undeformed in traditional SPIF. Moreover, M-SPIF creates less localized plastic strain than traditional SPIF while forming the desired geometry.

0209 industrial biotechnologyMaterials scienceMechanical EngineeringProcess (computing)Mechanical engineering02 engineering and technologyPlasticityIndustrial and Manufacturing EngineeringMagnetic field020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringCone (topology)Incremental sheet forming Magnetic field Sheet metalMagnetBall (bearing)Single pointSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePolarity (mutual inductance)
researchProduct

Friction Stir Welding of Ti6Al4V complex geometries for aeronautical applications: a feasibility study

2020

Abstract While Friction Stir Welding (FSW) of aluminium alloys can be considered a mature technology, even for complex joint morphologies, as T joints welded “in transparency”, welding of hard material still presents several open issues. In fact, welding of titanium alloys is a challenging process due to the chemical, mechanical and thermal characteristics of such materials which are subjected to atmosphere contamination resulting in joint hydrogen, oxygen and nitrogen embrittlement; additionally, due to the high melting temperature, large distortion and residual stress are found in joints obtained by traditional fusion welding processes as gas metal arc welding, electron beam welding and l…

0209 industrial biotechnologyMaterials scienceMetallurgyFriction Stir WeldingLaser beam weldingTitanium alloy02 engineering and technologyWeldingIndustrial and Manufacturing EngineeringGas metal arc weldinglaw.inventionFusion welding020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringArtificial IntelligenceResidual stresslawT-joints.Electron beam weldingFriction stir weldingTitanium alloySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneProcedia Manufacturing
researchProduct

AZ31 magnesium alloy recycling through friction stir extrusion process

2015

Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…

0209 industrial biotechnologyMaterials scienceMetallurgyScrap02 engineering and technologyFixture021001 nanoscience & nanotechnologyRodMaterial flowFriction stir extrusion020901 industrial engineering & automationMachiningUltimate tensile strengthRecyclingGeneral Materials ScienceExtrusionMaterials Science (all)Magnesium alloyComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMagnesium alloyMaterial flowInternational Journal of Material Forming
researchProduct

Linear friction welding of dissimilar AA6082 and AA2011 aluminum alloys: microstructural characterization and design guidelines

2015

This paper presents the results of an experimental and numerical campaign on Linear Friction Welding of dissimilar AA2011-T8 and AA6082-T6 aluminum alloys. Experimental tests were carried out with constant oscillation amplitude and process time. Varying oscillation frequency, interface pressure, specimen geometry and mutual position were used. Grain size measurements, HV tests and EDX analysis were considered to characterize the microstructure of the joints as a function of the input process parameters. A thermal numerical model was utilized to predict the temperature profiles in the joints during the process. The obtained results allowed the identification of four weld categories: sound jo…

0209 industrial biotechnologyMaterials scienceOscillationMetallurgychemistry.chemical_element02 engineering and technologyWelding021001 nanoscience & nanotechnologyMicrostructureGrain sizeCharacterization (materials science)law.invention020901 industrial engineering & automationchemistryAluminiumlawGeneral Materials ScienceFriction weldingComposite material0210 nano-technologyLinear Friction Welding Dissimilar welds Aluminum alloys Grain sizeSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJoint (geology)International Journal of Material Forming
researchProduct

Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization

2019

Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…

0209 industrial biotechnologyMaterials sciencePrimary energyAluminium alloyStrategy and ManagementAlloySustainable manufacturingchemistry.chemical_element02 engineering and technologyManagement Science and Operations Researchengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePressingWire drawingElectric potential energyMetallurgy021001 nanoscience & nanotechnologySECFriction stir extrusionchemistryengineeringExtrusion0210 nano-technologySolid State recyclingEfficient energy use
researchProduct

Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation

2020

Conventional metal chips recycling processes are energy-intensive with low efficiency and permanent material losses during re-melting. Solid state recycling allows direct recycling of metal scraps into semi-finished products. It is expected that this process category would lower the environmental performance of metals recycling. Friction Stir Consolidation is a new solid-state technique taking advantage of friction heat generation and severe plastic deformation to consolidate chips into billets. In this research, the feasibility of Friction Stir Consolidation as aluminum chips recycling process is analyzed. Specifically, an experimental campaign has been carried out with varying main proces…

0209 industrial biotechnologyMaterials sciencePrimary energySolid bondingAlloySolid-stateSustainable manufacturingchemistry.chemical_elementFriction stir consolidation02 engineering and technologyengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumManagement of Technology and InnovationGeneral Materials ScienceRecyclingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneConsolidation (soil)Renewable Energy Sustainability and the EnvironmentMechanical EngineeringMetallurgy021001 nanoscience & nanotechnologychemistryHeat generationengineeringSevere plastic deformation0210 nano-technologyEfficient energy useAluminum
researchProduct

Al-SiC Metal Matrix Composite production through Friction Stir Extrusion of aluminum chips

2017

Abstract The production of most mechanical component requires machining operation, thus usually implying the cut material to be wasted as scrap. Traditional recycling techniques are not able to efficiently recycle metal chips because of some critical aspects that characterize such kind of scraps (shape, oxide layers, contaminating residues, etc). Friction Stir Extrusion is an innovative solid state direct-recycling technique for metal machining chips. During the process, a rotating tool is plunged into a hollows matrix to compact, stir and finally, back extrudes the chips to be recycled in a full dense rod. This process results to be particularly relevant since no preliminary treatment of t…

0209 industrial biotechnologyMaterials scienceSolid-stateOxideChipchemistry.chemical_elementScrap02 engineering and technologychemistry.chemical_compound020901 industrial engineering & automationMachiningAluminiumSilicon carbideComposite materialRecycleSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSilicon CarbideMetal matrix compositeMetallurgyGeneral MedicineFriction Stir Extrusion021001 nanoscience & nanotechnologyFriction Stir Extrusion; Recycle; Chips; Metal Matrix Composites; Silicon CarbidechemistryExtrusionMetal Matrix Composite0210 nano-technology
researchProduct

Application of linear friction welding for joining ultrafine grained aluminium

2020

Abstract Ultrafine grained (UFG) materials are of great potential in industry due to their enhanced mechanical strength and other promising features, such as ability to superplastic deformation or excellent corrosion resistance. Nevertheless, one of the main limitations lies in their low thermal stability, which leads to excessive grain growth at elevated temperature. It influences mainly further processes performed at high temperature, such as joining. It causes detrimental problems during conventional fusion welding, as significant grain growth is observed and therefore the advantages as a result of small average grain size disappear. Therefore, the idea of applying solid state joining pr…

0209 industrial biotechnologyMaterials scienceStrategy and ManagementMetallurgySuperplasticity02 engineering and technologyWeldingManagement Science and Operations Research021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringGrain sizelaw.inventionGrain growthFusion welding020901 industrial engineering & automationSevere plastic deformationlawUltimate tensile strengthAluminiumFriction weldingUltrafine grained microstructureDeformation (engineering)0210 nano-technologyLinear friction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Meta-heuristic Algorithms for Nesting Problem of Rectangular Pieces

2017

Abstract Nesting problems consist of placing multiple items onto larger shapes finding a good arrangement. The goal of the nesting process is to minimize the waste of material. It is common to assume, as in the present work, that the stock sheet has fixed width and infinite height, since in the real world a company may have to cut pieces from a roll of material. The complexity of such problems is often faced with a two-stage approach, so-called “hybrid algorithm”, combining a placement routine and a meta-heuristic algorithm. Starting from a given positioning sequence, the placement routine generates a non-overlapping configuration. The encoded solution is manipulated and modified by the met…

0209 industrial biotechnologyMathematical optimization021103 operations researchbusiness.industry0211 other engineering and technologiesNesting (process)No Fit Polygon algorithm.Sheet metal optimisation02 engineering and technologyGeneral MedicineGeometric problemsSheet metal optimisation; meta-heuristic algorithm; No Fit Polygon algorithm.020901 industrial engineering & automationSoftwaremeta-heuristic algorithmPython languageNo fit polygonMeta heuristicbusinessAlgorithmFixed widthSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMathematics
researchProduct

Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production

2020

Abstract Additive manufacturing (AM) processes are gathering momentum as an alternative to conventional manufacturing processes. A research effort is being made worldwide to identify the most promising AM approaches. Within this category, wire arc additive manufacturing (WAAM) is among the most interesting, especially when large parts must be manufactured. In this paper, two different WAAM deposition techniques suitable for the deposition of Aluminum alloys, Cold Metal Transfer (CMT) and CMT mix drive, are analyzed and compared. With the aim of obtaining a clear picture concerning the two different techniques, microstructural analyses, mechanical property evaluation and electrical energy de…

0209 industrial biotechnologyMechanical propertyEnergy demandMaterials sciencebusiness.industryElectric potential energyAlloy02 engineering and technologyengineering.materialAdditive manufacturing Energy efficiency Mechanical properties WAAMIndustrial and Manufacturing EngineeringCharacterization (materials science)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringengineeringProduction (economics)Deposition (phase transition)Metal transferProcess engineeringbusinessSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct