Search results for "temporal scale"
showing 10 items of 36 documents
Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim
2017
Abstract This paper introduces a newly compiled set of feature-based climatologies identified from ERA-Interim (1979–2014). Two categories of flow features are considered: (i) Eulerian climatologies of jet streams, tropopause folds, surface fronts, cyclones and anticyclones, blocks, and potential vorticity streamers and cutoffs and (ii) Lagrangian climatologies, based on a large ensemble of air parcel trajectories, of stratosphere–troposphere exchange, warm conveyor belts, and tropical moisture exports. Monthly means of these feature climatologies are openly available at the ETH Zürich web page (http://eraiclim.ethz.ch) and are annually updated. Datasets at higher resolution can be obtained…
The Added-Value of Remotely-Sensed Soil Moisture Data for Agricultural Drought Detection in Argentina
2021
In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at on…
Compensatory water effects link yearly global land CO2 sink changes to temperature
2017
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…
EVASPA (EVapotranspiration Assessment from SPAce) tool: an overview
2013
International audience; Evapotranspiration (ET) is a fundamental variable of the hydrological cycle and its estimation is required for irrigation management, water resources planning and environmental studies. Remote sensing provides spatially distributed cost-effective information for ET maps production at regional scale. We have developed EVASPA too for mapping ET from remote sensing data at spatial and temporal scales relevant to hydrological or agronomica studies. EVASPA includes several algorithms for estimating evapotranspiration and various equations for estimating the required input information (net radiation, ground heat flux, evaporative fraction…), which provides a way to assess …
Development of a general model to estimate the instantaneous, daily, and daytime net radiation with satellite data on clear-sky days
2015
Net radiation is a key variable in computing evapotranspiration and is a driving force in many other physical and biological processes. Remote sensing techniques provide an unparalleled spatial and temporal coverage of land-surface attributes, and thus several studies have attempted to estimate net radiation by combining remote sensing observations with surface and atmospheric data. However, remote sensing provides instantaneous data, when many applications and models need information at other temporal scales. In this work, a new general methodology is proposed to estimate daily and daytime net radiation and to retrieve the diurnal cycle of net radiation. Four images were acquired on differ…
Unconventional Reducing Gases Monitoring in Everyday Places
2017
Abstract Air pollution, be it indoors or outdoors, is a major environmental health concern as it can lead to serious health effects, such as respiratory diseases, including asthma and lung cancer. Much progress has been made in Europe in improving outdoor air quality and limit values have been set for several pollutants. However, indoor air quality also requires attention because this is where we spend most of our time. Measurements at appropriate spatial and temporal scales are essential for understanding and monitoring heterogeneous environments with complex and highly variable emission sources, such as in urban areas. However, the costs and complexity of conventional air quality measurem…
Quantifying submarine groundwater discharge in the coastal zone via multiple methods
2006
Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in di…
Testing the effects of temporal data resolution on predictions of the effects of climate change on bivalves
2014
a b s t r a c t The spatial-temporal scales on which environmental observations are made can significantly affect our perceptions of ecological patterns in nature. Understanding potential mismatches between environmen- tal data used as inputs to predictive models, and the forecasts of ecological responses that these models generate are particularly difficult when predicting responses to climate change since the assumption of model stationarity in time cannot be tested. In the last four decades, increases in computational capacity (by a factor of a million), and the evolution of new modeling tools, have permitted a corresponding increase in model complexity, in the length of the simulations,…
A NEW VERSION OF THE USLE-MM FOR PREDICTING BARE PLOT SOIL LOSS AT THE SPARACIA (SOUTH ITALY) EXPERIMENTAL SITE
2015
Improving empirical prediction of plot soil erosion at the event temporal scale has both scientific and practical importance. In this investigation, 492 runoff and soil loss data from plots of different length, (11 < < 44 m), and steepness, s (14.9 < s < 26.0%), established at the Sparacia experimental station, in Sicily, south Italy, were used to derive a new version of USLE-MM model, by only assuming a value of one for the topographic length, L, and steepness, S, factors for = 22 m and s = 9%, respectively. An erosivity index equal to (QREI30)b1, QR and EI30 being the runoff coefficient and the event rainfall erosivity index, respectively, with b1 > 1 was found to be …
Using genetic markers to unravel the origin of birds converging towards pre-migratory sites
2018
AbstractIdentifying patterns of individual movements in spatial and temporal scales can provide valuable insight into the structure of populations and the dynamics of communities and ecosystems. Especially for migrating birds, that can face a variety of unfavorable conditions along their journey, resolving movements of individuals across their annual cycle is necessary in order to design better targeted conservation strategies. Here, we studied the movements of a small migratory falcon, the Lesser Kestrel (Falco naumanni), by genetically assigning feathers from individuals of unknown origin that concentrate in large roosts during the pre-migratory period. Our findings suggest that birds fro…