Search results for "terahertz"
showing 10 items of 152 documents
Gas-Phase Vibrational Spectroscopy of the Hydrocarbon Cations l-C3H+, HC3H+, and c-C3H2+: Structures, Isomers, and the Influence of Ne-Tagging
2019
We report the first gas-phase vibrational spectra of the hydrocarbon ions C3H+ and C3H2+. The ions were produced by electron impact ionization of allene. Vibrational spectra of the mass-selected ions tagged with Ne were recorded using infrared predissociation spectroscopy in a cryogenic ion trap instrument using the intense and widely tunable radiation of a free electron laser. Comparison of high-level quantum chemical calculations and resonant depletion measurements revealed that the C3H+ ion is exclusively formed in its most stable linear isomeric form, whereas two isomers were observed for C3H2+. Bands of the energetically favored cyclic c-C3H2+ are in excellent agreement with calculated…
Reversible Photochemical Control of Doping Levels in Supported Graphene
2017
Controlling the type and density of charge carriers in graphene is vital for a wide range of applications of this material in electronics and optoelectronics. To date, chemical doping and electrostatic gating have served as the two most established means to manipulate the carrier density in graphene. Although highly effective, these two approaches require sophisticated graphene growth or complex device fabrication processes to achieve both the desired nature and the doping densities with generally limited dynamic tunability and spatial control. Here, we report a convenient and tunable optical approach to tune the steady-state carrier density and Fermi energy in graphene by photochemically c…
All-fibered high-quality 1.5–2 THz femtosecond pulse sources
2009
Generation of high-quality ultra-high repetition rate optical pulse trains around 1.55µm has become increasingly interesting for many scientific applications such as optical sampling, ultra-high capacity transmission systems, component testing or nonlinear phenomena studies. Unfortunately, the current bandwidth limitations of optoelectronic devices do not enable the direct generation of pulses with repetition rate higher than 80GHz and a temporal width below a few ps.
All-fiber processing of terahertz-bandwidth signals based on cascaded tapered fibers
2013
Tapered single-mode fibers are employed to perform dynamic pulse shaping in a bandwidth of several terahertz. The transfer function of cascaded biconical tapers is controlled by introducing a phase shift into one of them through mechanical stretching. It is a simple and low-cost technique with potential to process signals with bandwidths as large as those allocated by standard optical fiber while introducing little degradation. Femtosecond pulses are shaped to prove the concept. (C) 2013 Optical Society of America
320GHz, 640GHz and 1THz femtosecond pulse sources based on multiple four wave mixing in highly non linear optical fibers
2006
Ultra-high repetition rate, transform-limited femtosecond pulse trains have been generated around 1555 nm at 320 GHz, 640 GHz and 1 THz through the compression of a dual frequency beat-signal in a highly nonlinear optical fiber.
Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields.
2021
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the stat…
Hysteresis and frequency tunability of gyrotrons
2015
We present the first devoted experimental and theoretical study of hysteresis phenomenon in relation to frequency tunability of gyrotrons.
Quasi-free nanoparticle vibrations in a highly-compressed ZrO2 nanopowder
2012
Several-nanometer-size mechanical oscillators, or nanoresonators, may complement electronic and optical technologies in future terahertz devices, but they can be useful only if they can be made to ...
Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy
2018
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium-iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current $j_\textrm{s}$ arises on the same ~100fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering …
Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz
2021
Reliable modulation of terahertz electromagnetic waveforms is important for many applications. Here, we rapidly modulate the direction of the electric field of linearly polarized terahertz electromagnetic pulses with 1–30 THz bandwidth by applying time-dependent magnetic fields to a spintronic terahertz emitter. Polarity modulation of the terahertz field with more than 99% contrast at a rate of 10 kHz is achieved using a harmonic magnetic field. By adding a static magnetic field, we modulate the direction of the terahertz field between angles of, for instance, −53° and 53° at kilohertz rates. We believe our approach makes spintronic terahertz emitters a promising source for low-noise modula…