Search results for "terahertz"

showing 10 items of 152 documents

University of Palermo: Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material C…

2012

Content synopsis of the following paper: Matteo Cherchi, Alberto Taormina, Alessandro C. Busacca, Roberto L. Oliveri, Saverio Bivona, Alfonso C. Cino, Salvatore Stivala, Stefano Riva Sanseverino, and Claudio Leone, "Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison", IEEE Journal of Quantum Electronics, Vol. 46, N. 3, March 2010

Optical waveguideOptical frequency conversionTerahertz generationSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

Art Painting Testing with Terahertz Pulse and Frequency Modulated Continuous Wave

2017

Paintings of individuals or collections undergo aging over time. The work of art restorers consists of repairing these defects using techniques that respect the history of the work. Ultraviolet, infrared and visible light and X-rays are well known techniques for analyzing these defects, but Terahertz is also increasingly used. Several works have shown that it is possible to detect hidden layers and various defects via terahertz pulses. In a previous work, we have shown that it is possible to use terahertz radiation to detect defects in the context of a restoration of a painting with a speed increase compared to time domain imaging.

PaintingMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryInfraredTerahertz radiation[SPI] Engineering Sciences [physics]Context (language use)01 natural sciences010309 optics[SPI]Engineering Sciences [physics]Optics0103 physical sciencesTerahertz pulse[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicContinuous waveTime domainbusinessImage restorationComputingMilieux_MISCELLANEOUS
researchProduct

Imprinting the complex dielectric permittivity of liquids into the spintronic terahertz emission

2021

We report an approach in time-domain terahertz (THz) spectroscopy for measuring the dielectric response of liquids based on inherent properties of spintronic THz emitters (STEs). The THz electric field radiated from the STE is inversely proportional to the sum of the complex refractive indices of the media surrounding the thin metallic stack of the STE and the stack's conductivity. We demonstrate that by bringing a liquid in contact with the emitter, its complex refractive index and accordingly its dielectric response are imprinted into the radiated electromagnetic field from the emitter. We use water as the test liquid and ascertain its dielectric loss and permittivity in the range of ∼0.…

PermittivityElectromagnetic fieldMaterials sciencePhysics and Astronomy (miscellaneous)business.industryTerahertz radiation530 PhysicsPhysics::Optics530 PhysikStack (abstract data type)Electric fieldOptoelectronicsDielectric lossbusinessRefractive indexCommon emitter
researchProduct

Broadband Dielectric Spectroscopy of Ferroelectric Phase Transitions in PbSc1/2Nb1/2O3Ordered Ceramics

2008

Broadband dielectric spectroscopy of PbSc 1/2 Nb 1/2 O 3 (PSN) ordered ceramics are reported within the range of 20 Hz ≤ ν ≤ 2 THz in 80 K ≤ T ≤ 300 K temperatures. Spectrally very broad dielectric dispersion consisting of two parts − at lower frequencies, ferroelectric domains cause a dispersion and at higher frequencies, higher temperatures the relaxation soft mode is responsible for the dispersion. The relaxation soft mode exhibit pronounced hardening on cooling, whilst the ferroelectric phase transition is connected with an abrupt freezing and rise of polar nanoregions into ferroelectric domains.

Phase transitionMaterials scienceCondensed matter physicsTerahertz radiationbusiness.industryRelaxation (NMR)Soft modesCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic MaterialsDielectric spectroscopyOpticsvisual_artDispersion (optics)visual_art.visual_art_mediumCeramicbusinessFerroelectrics
researchProduct

Thermoelectric radiation detector based on a superconductor-ferromagnet junction : Calorimetric regime

2018

We study the use of a thermoelectric junction as a thermal radiation detector in the calorimetric regime, where single radiation bursts can be separated in time domain. We focus especially on the case of a large thermoelectric figure of merit $ZT$ affecting significantly for example the relevant thermal time scales. This work is motivated by the use of hybrid superconductor/ferromagnet systems in creating an unprecedentedly high low-temperature $ZT$ even exceeding unity. Besides constructing a very general noise model which takes into account cross correlations between charge and heat noise, we show how the detector signal can be efficiently multiplexed by the use of resonant LC circuits gi…

PhotonTerahertz radiationinductorsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologysuperconductors7. Clean energy01 natural sciencesNoise (electronics)Particle detectorsuprajohteetradiation detectorsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesThermoelectric effectTime domain010306 general physicssignal processingPhysicssuperconducting filmsCondensed Matter - Mesoscale and Nanoscale Physicsta114ta213Detector021001 nanoscience & nanotechnology3. Good healthComputational physicsThermal radiationilmaisimetlämpösäteily0210 nano-technologytelecommunications engineeringJournal of Applied Physics
researchProduct

Hyperspectral terahertz microscopy via nonlinear ghost imaging

2020

Ghost imaging, based on single-pixel detection and multiple pattern illumination, is a crucial investigative tool in difficult-to-access wavelength regions. In the terahertz domain, where high-resolution imagers are mostly unavailable, ghost imaging is an optimal approach to embed the temporal dimension, creating a “hyperspectral” imager. In this framework, high resolution is mostly out of reach. Hence, it is particularly critical to developing practical approaches for microscopy. Here we experimentally demonstrate time-resolved nonlinear ghost imaging, a technique based on near-field, optical-to-terahertz nonlinear conversion and detection of illumination patterns. We show how space–time c…

Physics - Instrumentation and DetectorsComputer scienceTerahertz radiationFOS: Physical sciences02 engineering and technologyGhost imaging01 natural sciences010309 opticssymbols.namesakeOptics0103 physical sciencesMicroscopyCouplingbusiness.industryQC0454.T47Hyperspectral imagingInstrumentation and Detectors (physics.ins-det)QC0446.2021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Electronic Optical and Magnetic MaterialsNonlinear systemWavelengthFourier transformComputer Science::Computer Vision and Pattern Recognitionsymbols0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

Study of Mode Competition in the Third Harmonic Gyrotron with Inclusion of the Electron Velocity Spread and the Beam Width

2018

Influence of the electron velocity spread and the beam width on the mode competition and efficiency is investigated in the 1.185- THz third harmonic gyrotron to be used in dynamical nuclear polarization - nuclear magnetic resonance (DNP-NMR) spectrometer.

PhysicsBeam diameterSpectrometerTerahertz radiationbusiness.industryMode (statistics)Polarization (waves)01 natural sciences010305 fluids & plasmaslaw.inventionHarmonic analysisElectricity generationOpticslawGyrotron0103 physical sciencesNuclear Experiment010306 general physicsbusiness2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
researchProduct

Large surface magnetization in noncentrosymmetric antiferromagnets

2020

Thin-film antiferromagnets (AFs) with Rashba spin-orbit coupling are theoretically investigated. We demonstrate that the relativistic Dzyaloshinskii-Moriya interaction (DMI) produces a large surface magnetization and a boundary-driven twist state in the antiferromagnetic N\' eel vector. We predict a magnetization on the order of $2.3\cdot 10^4$~A/m, which is comparable to the magnetization of ferromagnetic semiconductors. Importantly, the magnetization is characterized by ultra-fast terahertz dynamics and provides new approaches for efficiently probing and controlling the spin dynamics of AFs as well as detecting the antiferromagnetic DMI. Notably, the magnetization does not lead to any str…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsTerahertz radiationMagnetic monopoleMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesOrder (ring theory)02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciencesMagnetic fieldMagnetizationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsTwist010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Gyrotron interaction simulations with tapered magnetostatic field

2010

We investigate the interaction of the electron beam with the RF wave in a gyrotron, in the presence of an axially tapered magnetic field. The simulation results of three interaction codes are compared and the different modelings are discussed.

PhysicsCondensed matter physicsField (physics)Terahertz radiationCyclotronMagnetostaticsComputational physicsMagnetic fieldlaw.inventionlawGyrotronCathode rayPhysics::Accelerator PhysicsAxial symmetry35th International Conference on Infrared, Millimeter, and Terahertz Waves
researchProduct

Néel Spin-Orbit Torque Driven Antiferromagnetic Resonance in Mn2Au Probed by Time-Domain THz Spectroscopy

2018

We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Neel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we inf…

PhysicsCondensed matter physicsOrders of magnitude (temperature)Terahertz radiationPhysics::OpticsGeneral Physics and AstronomyResonance02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyMagnetic fieldNormal modeElectric field0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyExcitationPhysical Review Letters
researchProduct