Search results for "termini"

showing 10 items of 365 documents

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

2014

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …

Discrete mathematicsImplicit functionBinary decision diagram010102 general mathematics02 engineering and technologyFunction (mathematics)Computer Science::Artificial IntelligenceComputer Science::Computational Complexity01 natural sciencesCombinatoricsNondeterministic algorithmComputer Science::Logic in Computer SciencePartial function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsBoolean functionQuantumQuantum computerMathematics
researchProduct

Automata and differentiable words

2011

We exhibit the construction of a deterministic automaton that, given k > 0, recognizes the (regular) language of k-differentiable words. Our approach follows a scheme of Crochemore et al. based on minimal forbidden words. We extend this construction to the case of C\infinity-words, i.e., words differentiable arbitrary many times. We thus obtain an infinite automaton for representing the set of C\infinity-words. We derive a classification of C\infinity-words induced by the structure of the automaton. Then, we introduce a new framework for dealing with \infinity-words, based on a three letter alphabet. This allows us to define a compacted version of the automaton, that we use to prove that ev…

Discrete mathematicsKolakoski wordGeneral Computer ScienceC∞-wordsPowerset constructionTimed automatonPushdown automatonBüchi automatonComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)68R15AutomataTheoretical Computer ScienceCombinatoricsForbidden wordsDeterministic automatonProbabilistic automatonTwo-way deterministic finite automatonNondeterministic finite automatonC∞ -wordForbidden wordComputer Science::Formal Languages and Automata TheoryComputer Science(all)Computer Science - Discrete MathematicsMathematicsTheoretical Computer Science
researchProduct

Optimal paths in weighted timed automata

2004

AbstractWe consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n(|δ(A)|+|wmax|)), where n is the number of clock…

Discrete mathematicsModel checkingHybrid systemsOptimization problemGeneral Computer ScienceComputer scienceOptimal reachabilityTimed automatonBüchi automatonDirected graphTheoretical Computer ScienceAutomatonCombinatoricsDeterministic automatonReachabilityShortest path problemState spaceAutomata theoryGraph (abstract data type)Two-way deterministic finite automatonTimed automataAlgorithmComputer Science::Formal Languages and Automata TheoryComputer Science(all)Mathematics
researchProduct

A Logical Characterisation of Linear Time on Nondeterministic Turing Machines

1999

The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f1..∃fk∃R1..∃Rm∀xφv; that is true exactly for all strings in L. In this formula the fi are unary function symbols, the Ri are unary relation symbols and φv; is a quantifierfree formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in φv; no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these r…

Discrete mathematicsNTIMEComputational complexity theoryUnary operationCombinatoricsNondeterministic algorithmTuring machinesymbols.namesakeNon-deterministic Turing machinesymbolsUnary functionTime complexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On the Class of Languages Recognizable by 1-Way Quantum Finite Automata

2007

It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.

Discrete mathematicsNested wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciences02 engineering and technologyComputer Science::Computational Complexityω-automaton01 natural sciencesDeterministic pushdown automatonDeterministic finite automatonRegular language010201 computation theory & mathematicsProbabilistic automaton0202 electrical engineering electronic engineering information engineeringComputer Science::Programming LanguagesQuantum finite automata020201 artificial intelligence & image processingNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Quantum Pushdown Automata

2000

Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown …

Discrete mathematicsNested wordComputer scienceDeterministic context-free grammarContext-free languagePushdown automatonNonlinear Sciences::Cellular Automata and Lattice GasesEmbedded pushdown automatonDeterministic pushdown automatonTuring machinesymbols.namesakeRegular languageDeterministic automatonProbabilistic automatonsymbolsQuantum finite automataAutomata theoryComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata

2013

We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.

Discrete mathematicsNested wordDeterministic finite automatonContinuous spatial automatonAutomata theoryQuantum finite automataNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMobile automatonMathematics
researchProduct

Artin’s Conjecture and Size of Finite Probabilistic Automata

2008

Size (the number of states) of finite probabilistic automata with an isolated cut-point can be exponentially smaller than the size of any equivalent finite deterministic automaton. The result is presented in two versions. The first version depends on Artin's Conjecture (1927) in Number Theory. The second version does not depend on conjectures but the numerical estimates are worse. In both versions the method of the proof does not allow an explicit description of the languages used. Since our finite probabilistic automata are reversible, these results imply a similar result for quantum finite automata.

Discrete mathematicsNested wordDeterministic finite automatonDFA minimizationDeterministic automatonAutomata theoryQuantum finite automataNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

The complexity of probabilistic versus deterministic finite automata

1996

We show that there exists probabilistic finite automata with an isolated cutpoint and n states such that the smallest equivalent deterministic finite automaton contains \(\Omega \left( {2^{n\tfrac{{\log \log n}}{{\log n}}} } \right)\) states.

Discrete mathematicsNested wordDeterministic finite automatonDFA minimizationDeterministic automatonQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Languages Recognizable by Quantum Finite Automata

2006

There are several nonequivalent definitions of quantum finite automata. Nearly all of them recognize only regular languages but not all regular languages. On the other hand, for all these definitions there is a result showing that there is a language l such that the size of the quantum automaton recognizing L is essentially smaller than the size of the minimal deterministic automaton recognizing L. For most of the definitions of quantum finite automata the problem to describe the class of the languages recognizable by the quantum automata is still open. The partial results are surveyed in this paper. Moreover, for the most popular definition of the QFA, the class of languages recognizable b…

Discrete mathematicsNested wordRegular languageDeterministic automatonProbabilistic automatonQuantum finite automataAbstract family of languagesNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum computerMathematics
researchProduct