Search results for "termini"
showing 10 items of 365 documents
Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs
2014
In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …
Automata and differentiable words
2011
We exhibit the construction of a deterministic automaton that, given k > 0, recognizes the (regular) language of k-differentiable words. Our approach follows a scheme of Crochemore et al. based on minimal forbidden words. We extend this construction to the case of C\infinity-words, i.e., words differentiable arbitrary many times. We thus obtain an infinite automaton for representing the set of C\infinity-words. We derive a classification of C\infinity-words induced by the structure of the automaton. Then, we introduce a new framework for dealing with \infinity-words, based on a three letter alphabet. This allows us to define a compacted version of the automaton, that we use to prove that ev…
Optimal paths in weighted timed automata
2004
AbstractWe consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n(|δ(A)|+|wmax|)), where n is the number of clock…
A Logical Characterisation of Linear Time on Nondeterministic Turing Machines
1999
The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f1..∃fk∃R1..∃Rm∀xφv; that is true exactly for all strings in L. In this formula the fi are unary function symbols, the Ri are unary relation symbols and φv; is a quantifierfree formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in φv; no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these r…
On the Class of Languages Recognizable by 1-Way Quantum Finite Automata
2007
It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.
Quantum Pushdown Automata
2000
Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown …
One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata
2013
We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.
Artin’s Conjecture and Size of Finite Probabilistic Automata
2008
Size (the number of states) of finite probabilistic automata with an isolated cut-point can be exponentially smaller than the size of any equivalent finite deterministic automaton. The result is presented in two versions. The first version depends on Artin's Conjecture (1927) in Number Theory. The second version does not depend on conjectures but the numerical estimates are worse. In both versions the method of the proof does not allow an explicit description of the languages used. Since our finite probabilistic automata are reversible, these results imply a similar result for quantum finite automata.
The complexity of probabilistic versus deterministic finite automata
1996
We show that there exists probabilistic finite automata with an isolated cutpoint and n states such that the smallest equivalent deterministic finite automaton contains \(\Omega \left( {2^{n\tfrac{{\log \log n}}{{\log n}}} } \right)\) states.
Languages Recognizable by Quantum Finite Automata
2006
There are several nonequivalent definitions of quantum finite automata. Nearly all of them recognize only regular languages but not all regular languages. On the other hand, for all these definitions there is a result showing that there is a language l such that the size of the quantum automaton recognizing L is essentially smaller than the size of the minimal deterministic automaton recognizing L. For most of the definitions of quantum finite automata the problem to describe the class of the languages recognizable by the quantum automata is still open. The partial results are surveyed in this paper. Moreover, for the most popular definition of the QFA, the class of languages recognizable b…