Search results for "tetragonal crystal"

showing 10 items of 216 documents

Quasi-hydrostatic X-ray powder diffraction study of the low- and high-pressure phases of CaWO4 up to 28 GPa

2014

We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of th…

Phase transitionEquation of stateMaterials scienceScheeliteThermodynamicsGeneral ChemistryCondensed Matter PhysicsFergusoniteX-ray diffractionHigh pressureTetragonal crystal systemCrystallographyFISICA APLICADAPhase (matter)X-ray crystallographyCalcium tungstateGeneral Materials SciencePowder diffractionPhase transitionMonoclinic crystal systemSolid State Sciences
researchProduct

Experimental and Theoretical Study of Bi2O2Se Under Compression

2018

[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…

Phase transitionEquation of stateMaterials scienceequations of stateBand gap02 engineering and technology01 natural sciencesTetragonal crystal systemCondensed Matter::Materials ScienceAb initio quantum chemistry methodsbismuth compounds0103 physical sciencescalculationsPhysical and Theoretical Chemistry010306 general physicsCondensed matter physicsbusiness.industrystability021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergySemiconductorStructural stabilityFISICA APLICADAHardening (metallurgy)electronic properties0210 nano-technologybusiness
researchProduct

Monoclinic-tetragonal-monoclinic phase transitions in Eu0.1Bi0.9VO4 under pressure

2019

The promising technological material Eu0.1Bi0.9VO4, has been studied for the first time at room-temperature under high-pressure, up to 24.9 GPa, by means of in situ angle dispersive powder x-ray diffraction (XRD). The compound undergoes two phase transitions at 1.9 and 16.1 GPa. The first transition is from the monoclinic fergusonite-type structure (space group I2/a) to a tetragonal scheelite-type structure (space group I41/a), being a ferroelastic-paraelastic transformation similar to that previously reported for isomorphic pristine BiVO4. The second phase transition is first-order in nature. The scheelite-type and the second high-pressure phase coexist in a wide pressure range. A monoclin…

Phase transitionMaterials science02 engineering and technologyCrystal structure021001 nanoscience & nanotechnologyCondensed Matter PhysicsFergusonite01 natural sciencesTetragonal crystal systemDodecahedronCrystallographyPhase (matter)0103 physical sciencesX-ray crystallographyGeneral Materials Science010306 general physics0210 nano-technologyMonoclinic crystal systemJournal of Physics: Condensed Matter
researchProduct

Complex high-pressure polymorphism of barium tungstate

2012

We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…

Phase transitionMaterials science02 engineering and technologyCrystal structureBawo47. Clean energy01 natural sciencesX-rayTetragonal crystal systemsymbols.namesakeAb initio quantum chemistry methods0103 physical sciencesCrystal010306 general physicsCaoo4Refinement021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyFISICA APLICADA[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]X-ray crystallographyTransitionsymbolsPACS: 62.50.−p 61.50.Ks 61.05.cp 63.20.ddCell0210 nano-technologyRaman spectroscopyPowder diffractionPowder DiffractionMonoclinic crystal system
researchProduct

Phase transition of tetragonal copper sulfide Cu2S at low temperatures

2017

The low-temperature behavior of tetragonal copper sulfide, ${\mathrm{Cu}}_{2}\mathrm{S}$, was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal ${\mathrm{Cu}}_{2}\mathrm{S}$ undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of $\ifmmode\pm\else\textpm\fi{}21$ K, an e…

Phase transitionMaterials scienceAbsorption spectroscopyBand gapTransition temperaturechemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperHeat capacity0104 chemical sciencesCrystallographyTetragonal crystal systemchemistryOrthorhombic crystal system0210 nano-technologyPhysical Review B
researchProduct

In-situ high-pressure Raman scattering studies in PbWO4 up to 48 GPa

2016

The effect of pressure on the Raman spectrum of PbWO4 has been investigated up to 48 GPa in a diamond-anvil cell using neon as pressure-transmitting medium. Changes are detected in the Raman spectrum at 6.8 GPa as a consequence of a structural phase transition from the tetragonal scheelite structure to the monoclinic PbWO4-III structure. Two additional phase transitions are detected at 15.5 and 21.2 GPa to the previously unknown crystalline phases IV and V. The last one remains stable up to 43.3 GPa. At 47.7 GPa all Raman modes disappear, which could be caused by a pressure-induced amorphization. All structural changes are reversible, being the scheelite phase recovered at ambient pressure.…

Phase transitionMaterials scienceAnalytical chemistryFOS: Physical sciences02 engineering and technology01 natural scienceschemistry.chemical_compoundTetragonal crystal systemsymbols.namesakePhase (matter)0103 physical sciencesMaterials Chemistry010306 general physics[PHYS]Physics [physics]Condensed Matter - Materials ScienceMechanical EngineeringMetals and AlloysMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyHigh pressureCrystallographychemistryPhase transitionsMechanics of MaterialsScheeliteRaman spectroscopysymbols0210 nano-technologyRaman spectroscopyRaman scatteringAmbient pressureMonoclinic crystal systemJournal of Alloys and Compounds
researchProduct

Monazite-type SrCrO4 under compression

2016

We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies an…

Phase transitionMaterials scienceBand gapPhononFOS: Physical sciences02 engineering and technologyX-RAY-DIFFRACTION; PRESSURE RAMAN-SCATTERING; PHOTOCATALYTIC PROPERTIES01 natural sciencesPhysics - GeophysicsTetragonal crystal systemsymbols.namesakeX-RAY-DIFFRACTIONAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesPRESSURE RAMAN-SCATTERING010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyGeophysics (physics.geo-ph)PHOTOCATALYTIC PROPERTIESsymbols0210 nano-technologyRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct

Optical investigation of phase transitions in Di(Tetraethylammonium) pentachloroantimonate(III) [N(C2H5)4]2SbCl5

1997

Abstract Spontaneous changes of linear birefringence in the [N(C2H5)4]2SbCl5 crystal were measured in the temperature range 200–500 K. Presence of two phase transitions at 219 K (monoclinic to orthorhombic) and at 347 K (orthorhombic to tetragonal) was confirmed. Two new phase transitions were found: -at 438 K (tetragonal to tetragonal) and at 467 K -to cubic phase.

Phase transitionMaterials scienceBirefringencebusiness.industryAtmospheric temperature rangeCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystalTetragonal crystal systemCrystallographyOpticsPhase (matter)Orthorhombic crystal systembusinessMonoclinic crystal systemFerroelectrics
researchProduct

Negative pressures in CaWO4 nanocrystals

2009

Tetragonal scheelite-type CaWO4 nanocrystals recently prepared by a hydrothermal method show an enhancement of its structural symmetry with the decrease in nanocrystal size. The analysis of the volume dependence of the structural parameters in CaWO4 nanocrystals with the help of ab initio total-energy calculations shows that the enhancement of the symmetry in the scheelite-type nanocrystals is a consequence of the negative pressure exerted on the nanocrystals; i.e., the nanocrystals are under tension. Besides, the behavior of the structural parameters in CaWO4 nanocrystals for sizes below 10 nm suggests an onset of a scheelite-to-zircon phase transformation in good agreement with the predic…

Phase transitionMaterials scienceCalcium compoundsAb initioUNESCO::FÍSICAGeneral Physics and AstronomyNanoparticleNanostructured materialsCrystal symmetryCrystallographyTetragonal crystal systemNanocrystalAb initio quantum chemistry methodsChemical physicsTotal energy:FÍSICA [UNESCO]Phase (matter)Ab initio calculations ; Calcium compounds ; Crystal growth from solution ; Crystal symmetry ; Nanostructured materials ; Solid-state phase transformations ; Total energySolid-state phase transformationsAb initio calculationsCrystal growth from solutionMonoclinic crystal system
researchProduct

Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals

2017

We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ~30nm) and 10 mol % Fe-doped tin dioxide (particle size ~18nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ~13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a …

Phase transitionMaterials scienceCiencias FísicasAnalytical chemistry02 engineering and technology010402 general chemistry01 natural sciencesTetragonal crystal systemchemistry.chemical_compoundGeneral Materials ScienceTin DioxideBulk modulusTin dioxideGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsNanocrystalline materialX-ray diffraction0104 chemical sciencesAstronomíaCrystallographychemistryX-ray crystallographyOrthorhombic crystal system0210 nano-technologyCIENCIAS NATURALES Y EXACTASHigh PressureAmbient pressureSolid State Sciences
researchProduct