Search results for "tetragonal crystal"
showing 10 items of 216 documents
Quasi-hydrostatic X-ray powder diffraction study of the low- and high-pressure phases of CaWO4 up to 28 GPa
2014
We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of th…
Experimental and Theoretical Study of Bi2O2Se Under Compression
2018
[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…
Monoclinic-tetragonal-monoclinic phase transitions in Eu0.1Bi0.9VO4 under pressure
2019
The promising technological material Eu0.1Bi0.9VO4, has been studied for the first time at room-temperature under high-pressure, up to 24.9 GPa, by means of in situ angle dispersive powder x-ray diffraction (XRD). The compound undergoes two phase transitions at 1.9 and 16.1 GPa. The first transition is from the monoclinic fergusonite-type structure (space group I2/a) to a tetragonal scheelite-type structure (space group I41/a), being a ferroelastic-paraelastic transformation similar to that previously reported for isomorphic pristine BiVO4. The second phase transition is first-order in nature. The scheelite-type and the second high-pressure phase coexist in a wide pressure range. A monoclin…
Complex high-pressure polymorphism of barium tungstate
2012
We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…
Phase transition of tetragonal copper sulfide Cu2S at low temperatures
2017
The low-temperature behavior of tetragonal copper sulfide, ${\mathrm{Cu}}_{2}\mathrm{S}$, was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal ${\mathrm{Cu}}_{2}\mathrm{S}$ undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of $\ifmmode\pm\else\textpm\fi{}21$ K, an e…
In-situ high-pressure Raman scattering studies in PbWO4 up to 48 GPa
2016
The effect of pressure on the Raman spectrum of PbWO4 has been investigated up to 48 GPa in a diamond-anvil cell using neon as pressure-transmitting medium. Changes are detected in the Raman spectrum at 6.8 GPa as a consequence of a structural phase transition from the tetragonal scheelite structure to the monoclinic PbWO4-III structure. Two additional phase transitions are detected at 15.5 and 21.2 GPa to the previously unknown crystalline phases IV and V. The last one remains stable up to 43.3 GPa. At 47.7 GPa all Raman modes disappear, which could be caused by a pressure-induced amorphization. All structural changes are reversible, being the scheelite phase recovered at ambient pressure.…
Monazite-type SrCrO4 under compression
2016
We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies an…
Optical investigation of phase transitions in Di(Tetraethylammonium) pentachloroantimonate(III) [N(C2H5)4]2SbCl5
1997
Abstract Spontaneous changes of linear birefringence in the [N(C2H5)4]2SbCl5 crystal were measured in the temperature range 200–500 K. Presence of two phase transitions at 219 K (monoclinic to orthorhombic) and at 347 K (orthorhombic to tetragonal) was confirmed. Two new phase transitions were found: -at 438 K (tetragonal to tetragonal) and at 467 K -to cubic phase.
Negative pressures in CaWO4 nanocrystals
2009
Tetragonal scheelite-type CaWO4 nanocrystals recently prepared by a hydrothermal method show an enhancement of its structural symmetry with the decrease in nanocrystal size. The analysis of the volume dependence of the structural parameters in CaWO4 nanocrystals with the help of ab initio total-energy calculations shows that the enhancement of the symmetry in the scheelite-type nanocrystals is a consequence of the negative pressure exerted on the nanocrystals; i.e., the nanocrystals are under tension. Besides, the behavior of the structural parameters in CaWO4 nanocrystals for sizes below 10 nm suggests an onset of a scheelite-to-zircon phase transformation in good agreement with the predic…
Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals
2017
We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ~30nm) and 10 mol % Fe-doped tin dioxide (particle size ~18nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ~13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a …