Search results for "theory"
showing 10 items of 24627 documents
Model building on the non-factorisable type IIA T6/(Z4×ΩR) orientifold
2016
We construct global semi-realistic supersymmetric models with intersecting D6-branes on the non-factorisable orientifold . The non-factorisable structure gives rise to differences compared to the factorisable case: additional conditions for the three-cycles to be Lagrangian and extra constraints on the wrapping numbers for building fractional cycles.
The Taming of Redox‐Labile Phosphidotitanocene Cations
2019
International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…
Towards Atomically Precise Supported Catalysts from Monolayer‐Protected Clusters: The Critical Role of the Support
2020
Abstract Controlling the size and uniformity of metal clusters with atomic precision is essential for fine‐tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X‐ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer‐protected clusters into catalysts. Based on the acidic nature of the support, cluster‐support interactions lead either to fragmentation of the cluster into isolated Au–ligand species or ligand‐free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while pre…
Gold/Isophorone Interaction Driven by Keto/Enol Tautomerization
2016
The binding behavior of isophorone (C9H14O) to Au adatoms and clusters deposited on MgO/Ag(001) thin films is investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The STM data reveal the formation of various metal/organic complexes, ranging from Au1/isophorone pairs to larger Au aggregates with molecules bound to their perimeter. DFT calculations find the energetically preferred keto-isophorone to be unreactive toward gold, while the enol-tautomer readily binds to Au monomers and clusters. The interaction is governed by electrostatic forces between the hydroxyl group of the enol and negative excess charges residing on the ad-gold. The activation barrier b…
The first example of cofacial bis(dipyrrins)
2016
International audience; Two series of cofacial bis(dipyrrins) were prepared and their photophysical properties as well as their bimolecular fluorescence quenching with C-60 were investigated. DFT and TDDFT computations were also performed as a modeling tool to address the nature of the fluorescence state and the possible inter-chromophore interactions. Clearly, there is no evidence for such interactions and the bimolecular quenching of fluorescence, in comparison with mono-dipyrrins, indicates that C-60-bis(dipyrrin) contacts occur from the outside of the "mouth" of the cofacial structure.
Elucidating the Influence of the Activation Energy on Reaction Rates by Simulations Based on a Simple Particle Model
2020
An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based on a 2D realistic dynamic model where atoms move because of their thermal energies and the trajectories are determined by solving numerically Newton’s laws according to a Molecular Dynamics (MD) scheme. Collisions are monitored as time progresses, and every time the collision energy is larger than the selected activation energy, a reactive event oc…
Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes
2003
International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…
Novel Stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu and Related Oligonuclear Tin(IV) Oxoclusters. Two Isomers in One Crystal
2016
The syntheses of the alkanolamine N(CH2CMe2OH)2(CMe2CH2OH) (1), of the stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu (2), and of the trinuclear tin oxocluster 3 consisting of the two isomers [(μ3-O)(O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3a) and [(μ3-O)(μ3-O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3b) as well as the isolation of a few crystals of the hexanuclear tin oxocluster [LSnOSn(OH)3LSnOH]2 [L = N(CH2CMe2O)2(CMe2CH2O)] (4) are reported. The compounds were characterized by 1H, 13C, 15N, and 119Sn (1–3) nuclear magnetic resonance and infrared spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction analysis (1–4). A graph set analysis was performed for compoun…
Exploring the Chemoselectivity towards Cysteine Arylation by Cyclometallated Au III Compounds: New Mechanistic Insights
2020
To gain more insight into the factors controlling the efficient cysteine arylation by cyclometalated Au(III) complexes, the reaction between selected gold compounds and different peptides was investigated by high‐resolution liquid chromatography electrospray ionization mass spectrometry (HR‐LC‐ESI‐MS). The deducted mechanisms of C–S cross‐coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.
2020
The course of organic chemical reactions is efficiently modelled through the concepts of “electrophiles” and “nucleophiles” (meaning electron-seeking and nucleus-seeking reactive species). On the one hand, an advanced approach of the correlation of the nucleophilicity parameters N and electrophilicity E has been delivered from the linear free energy relationship log k (20 °C) = s(N + E). On the other hand, the general influence of the solvent mixtures, which are very often employed in preparative synthetic chemistry, has been poorly explored theoretically and experimentally, to date. Herein, we combined experimental and theoretical studies of the solvent influence on pyrrolidine nucleophili…