Search results for "thermal radiation"
showing 7 items of 27 documents
An investigation of environmental temperature effects on energy exchange by thermal radiation
2013
The radiative heating or cooling of a body placed in an environment, whose temperature is considered constant is described by Stefan's law. In this paper, an analysis is made of how a time-dependent environmental temperature influences the heating/cooling process. We compare experimental results for a resistor first heated by the Joule effect inside a glass vacuum tube and then cooled under two different conditions: in a bath at a constant temperature and in air. We also discuss a model that describes how the time-dependent tube temperature influences the radiative resistor cooling by identifying the properties of the environment that make the resistor cooling rate linear.
Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation
2013
An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly …
Heat transfer in conducting and radiating bodies
1997
Abstract We introduce briefly some nonlocal models for heat transfer in conducting and radiating media. The goal is to give an idea of the general mathematical structure and related existence results for such models.
Comment on "Ecological importance of the thermal emissivity of avian eggshells".
2012
Eggshell emissivity must be known to determine accurately the cooling rate of avian eggs when the parent, after heating by conduction during the incubation, is temporarily absent. We estimate possible values of eggshell emissivities from in-situ measurements and spectral libraries. Emissivity is near to 1 (probably higher than 0.95) and therefore its effect on cooling rate may be negligible, with differences between the temperature of the egg assuming a value of e=0.95 and that of a blackbody (e=1) below 0.2 °C.
Numerical study of the accuracy of temperature measurement by thermocouples in small-scale reactors
2018
Proper temperature measurement is imperative in any laboratory study if reliable data are to be obtained, particularly in the field of chemical kinetics. In this paper we analyze in silico some typical thermowell configurations used in small-scale reactors by coupling computational fluid dynamics (CFD) with conjugated heat transfer phenomena. This allows us to identify deviations in measurements arising from thermal radiation and self-conductivity in mid and high temperature ranges, in addition to radial temperature gradients. A novel design is proposed and optimized by additional simulation, showing potential for faster and more accurate temperature measurements.
Theoretical efficiency limits for thermoradiative energy conversion
2015
Published version of an article in the journal: Journal of Applied Physics. Also available from the publisher at: http://dx.doi.org/10.1063/1.4907392 A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb…
Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials
1998
In this work we analyse a model for radiative heat transfer in materials that are conductive, grey and semitransparent. Such materials are for example glass, silicon, water and several gases. The most important feature of the model is the non-local interaction due to exchange of radiation. This, together with non-linearity arising from the well-known Stefan-Boltzmann law, makes the resulting heat equation non-monotone. By analysing the terms related to heat radiation we prove that the operator defining the problem is pseudomonotone. Hence, we can prove the existence of weak solution in the cases where coercivity can be obtained. In the general case, we prove the solvability of the system us…