Search results for "thioflavin T"
showing 10 items of 23 documents
Nouvelles perspectives concernant la structure et la fonction du domaine carboxyl terminal de Hfq
2015
Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent β-sheets within individual protomers to…
Self-Organization Pathways and Spatial Heterogeneity in Insulin Amyloid Fibril Formation
2009
At high temperature and low pH, the protein hormone insulin is highly prone to form amyloid fibrils, and for this reason it is widely used as a model system to study fibril formation mechanisms. In this work, we focused on insulin aggregation mechanisms occurring in HCl solutions (pH 1.6) at 60 degrees C. By means of in situ Thioflavin T (ThT) staining, the kinetics profiles were characterized as a function of the protein concentration, and two concurrent aggregation pathways were pointed out, being concentration dependent. In correspondence to these pathways, different morphologies of self-assembled protein molecules were detected by atomic force microscopy images also evidencing the prese…
Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates
2021
De novo designed protein supramolecular structures are nowadays attracting much interest as highly performing biomaterials. While a clear advantage is provided by the intrinsic biocompatibility and...
Designing trehalose-conjugated peptides for the inhibition of Alzheimer’s Aβ oligomerization and neurotoxicity
2008
Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway
2015
Aβ(1-40) peptide supramolecular assembly and fibril formation processes are widely recognized to have direct implications in the progression of Alzheimer's disease. The molecular basis of this biological process is still unknown and there is a strong need of developing effective strategies to control the occurring events. To this purpose the exploitation of small molecules interacting with Aβ aggregation represents one of the possible routes. Moreover, the use specific labeling has represented so far one of the most common and effective methods to investigate such a process. This possibility in turn rests on the reliability of the probe/labels involved. Here we present evidences of the effe…
Carnosine inhibits amyloid fibril formation of alpha crystallin under destabilizing conditions
2008
Inhibition of α-crystallin amyloid fibrils formation by carnosine
2008
Effect of the heat treatment on α-crystallin : characterisation of amyloid fibrils formation and inhibitory effect of carnosine
2009
High Fluorescence of Thioflavin T Confined in Mesoporous Silica Xerogels
2013
Trapping of organic molecules and dyes within nanoporous matrices is of great interest for the potential creation of new materials with tailored features and, thus, different possible applications ranging from nanomedicine to material science. The understanding of the physical basis of entrapment and the spectral properties of the guest molecules within the host matrix is an essential prerequisite for the design and control of the properties of these materials. In this work, we show that a mesoporous silica xerogel can efficiently trap the dye thioflavin T (ThT, a molecule used as a marker of amyloid fibrils and with potential drug benefits), sequestering it from an aqueous solution and pro…
Biochar from Wood Chips and Corn Cobs for Adsorption of Thioflavin T and Erythrosine B.
2022
Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The kinetics studies revealed that adsorption on external surfaces was the rate-limiting step for the removal of TT on both WC and CC biochar, while intraparticle diffusion was the rate-limiting step for the adsorption of EB. Maximal experimental adsorption capacities Qmaxexp of TT reached 182 ± 5 (WC) and 45 ± 2 mg g−1 (CC), and EB 12.7 ± 0.9 (WC) and 1.5 ± 0.4 mg g−1 (CC),…