Search results for "thylakoid"
showing 9 items of 89 documents
Ultrastructure and freeze-fracture studies of the thylakoids ofMantoniella squamata (Prasinophyceae)
1988
The ultrastructure and the supramolecular organization of the thylakoids of the small green flagellate,Mantoniella squamata, were examined in thin sections and freeze-fracture preparations. The whole chloroplast is tightly packed with thylakoids, which show a pattern of meandering, branching and/or anastomosing membranes. In freeze-fracture preparations only two fracture-faces can be distinguished: the PF- and the EF-face. The PF-face has a much higher particle density than the EF-face (PF: 4086 particles/μm2; EF: 865 particles/μm2). The EF-face is not as uniform as the PF-face. The areas which are packed with particles probably correspond to closely appressed thylakoid regions or adhesive …
Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation
2005
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal st…
De-epoxidation of Violaxanthin after Reconstitution into Different Carotenoid Binding Sites of Light-harvesting Complex II
2001
In higher plants, the de-epoxidation of violaxanthin (Vx) to antheraxanthin and zeaxanthin is required for the pH-dependent dissipation of excess light energy as heat and by that process plays an important role in the protection against photo-oxidative damage. The de-epoxidation reaction was investigated in an in vitro system using reconstituted light-harvesting complex II (LHCII) and a thylakoid raw extract enriched in the enzyme Vx de-epoxidase. Reconstitution of LHCII with varying carotenoids was performed to replace lutein and/or neoxanthin, which are bound to the native complex, by Vx. Recombinant LHCII containing either 2 lutein and 1 Vx or 1.6 Vx and 1.1 neoxanthin or 2.8 Vx per mono…
Multiple Short Term Effects of UV-B Radiation on the Diatom Phaeodactylum Tricornutum
1998
Increases in UV-B irradiance lead to many specific damaging effects upon the plants including damage of the thylakoid membrane, partial inhibition of PS II, decrease of chloroplast ATPase activity, loss of enzyme activities in the calvin cycle and alterations in pigment synthesis (1). Under natural conditions enhanced UV-B light is always accompanied by high intensities of photosynthetic active radiation (PAR). Damaging effects due to photoinhibitory PAR and UV-B light which lead to several oxygen radical species (2) could be reduced by photoprotection mechanisms. One of these protection mechanisms is the xanthophyll cycle. In higher plants and green algae violaxanthin is converted to zeaxa…
Pigment ligation to proteins of the photosynthetic apparatus in higher plants
1997
Ligation of pigments to proteins of the thylakoid membrane is a central step in the assembly of the photosynthetic apparatus in higher plants. Because of the potentially damaging photooxidative activity of chlorophylls, it is likely that between their biosynthesis and final assembly, chlorophylls will always be bound to protein complexes in which photooxidation is prevented by quenchers such as carotenoids. Such complexes may include chlorophyll carriers and/or membrane receptors involved in protein insertion into the membrane. Many if not all pigment-protein complexes of the thylakoid are stabilised towards protease attack by bound pigments. The major light-harvesting chlorophyll a/b prote…
Light Regulation of the Thylakoid LHCII Protein Phosphorylation at the Substrate Level
1998
The distribution of light energy between the two photosystems as well as the light-induced turnover of PSII proteins are regulated by the reversible phosphorylation of LHCII and the PSII-core proteins. The thylakoid protein kinase(s) is activated by a signal transduction system involving the interaction of reduced plastoquinone with the quinol oxidation site of the cytochrome bf complex [1]. Phosphorylation of the mobile pool of LHCII induces dissociation of this antenna from PSII and allows its interaction with the PSI in the stroma exposed membranes (state transition)[21. Dephosphorylation of LHCII by a membrane -bound phosphatase appears to be regulated by a cyclophilinlike protein locat…
Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR
2015
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII mon…
Truncated recombinant light harvesting complex II proteins are substrates for a protein kinase associated with photosystem II core complexes
1998
AbstractPrevious studies directed towards understanding phosphorylation of the chlorophyll a/b binding proteins comprising light harvesting complex II (LHC II) have concentrated on a single phosphorylation site located close to the N-terminus of the mature proteins. Here we show that a series of recombinant pea Lhcb1 proteins, each missing an N-terminal segment including this site, are nevertheless phosphorylated by a protein kinase associated with a photosystem II core complex preparation. An Lhcb1 protein missing the first 58 amino acid residues is not, however, phosphorylated. The results demonstrate that the LHC II proteins are phosphorylated at one or more sites, the implications of wh…
Dynamin-Like Proteins Are Potentially Involved in Membrane Dynamics within Chloroplasts and Cyanobacteria
2017
Dynamin-like proteins (DLPs) are a family of membrane-active proteins with low sequence identity. The proteins operate in different organelles in eukaryotic cells, where they trigger vesicle formation, membrane fusion, or organelle division. As discussed here, representatives of this protein family have also been identified in chloroplasts and DLPs are very common in cyanobacteria. Since cyanobacteria and chloroplasts, an organelle of bacterial origin, have similar internal membrane systems, we suggest that DLPs are involved in membrane dynamics in cyanobacteria and chloroplasts. Here, we discuss the features and activities of DLPs with a focus on their potential presence and activity in ch…