Search results for "time serie"
showing 10 items of 261 documents
Identification and visualization of differential isoform expression in RNA-seq time series
2018
Abstract Motivation As sequencing technologies improve their capacity to detect distinct transcripts of the same gene and to address complex experimental designs such as longitudinal studies, there is a need to develop statistical methods for the analysis of isoform expression changes in time series data. Results Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time. The package also includes new clustering and visualization functions that allow grouping of genes with similar expression patterns at the isoform level, as well as those genes with a shift in major …
System Dynamics in the Predictive Analytics of Container Freight Rates
2021
This study proposes a two-tier cross-validation and backtesting procedure, including expanding and rolling-window test metrics in predictive analytics of container freight rates by utilizing the system dynamics approach. The study utilized system dynamics to represent the nonlinear complex structure of container freight rates for predictive analytics and performed univariate and multivariate time-series analysis as benchmarks of the conventional approach. In particular, the China containerized freight index (CCFI) has been investigated through various parametric methodologies (both conventional time-series and system dynamics approaches). This study follows a strict validation process cons…
Crop Phenology Retrieval Through Gaussian Process Regression
2021
Monitoring crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. This study presents a framework for automatic corn phenology characterization based on high spatial and temporal resolution time series. By using the Difference Vegetation Index (DVI) estimated from Sentinel-2 data over Iowa (US), independent phenological models were optimized using Gaussian Processes regression. Their respective performances were assessed based on simulated phenological indi…
Sentinel-1 & Sentinel-2 Data for Soil Tillage Change Detection
2018
In this paper, an algorithm using Sentinel-1 (S-1) and Sentinel-2 (S-2) data to identify changes of tillage over agricultural fields at approximately similar to 100m resolution is presented. The methodology implements a multiscale temporal change detection on S-1 VH backscatter in order to single out VH changes due to agricultural practices only. The algorithm can be applied over bare or scarcely vegetated agricultural fields, which are identified from S-2 NDVI measurements. An initial assessment at farm scale using in situ and S-1 and SPOT5-Take5 data, acquired over the Apulian Tavoliere in southern Italy in 2015, is illustrated. A full validation of the approach is in progress over three …
Interpretability of Recurrent Neural Networks in Remote Sensing
2020
In this work we propose the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for multivariate time series of satellite data for crop yield estimation. Recurrent nets allow exploiting the temporal dimension efficiently, but interpretability is hampered by the typically overparameterized models. The focus of the study is to understand LSTM models by looking at the hidden units distribution, the impact of increasing network complexity, and the relative importance of the input covariates. We extracted time series of three variables describing the soil-vegetation status in agroe-cosystems -soil moisture, VOD and EVI- from optical and microwave satellites, as well as available in si…
Quantification of LAI interannual anomalies by adjusting climatological patterns
2011
International audience; Scaling variations and shifts in the timing of seasonal phenology are central features of global change research. In this study, we propose a novel climatology fitting approach to quantify inter-annual anomalies in LAI seasonality. A consistent archive of daily LAI estimates was first derived from historical AVHRR satellite data for the 1981-2000 period over a globally representative sample of sites. The climatology values were then computed by averaging multi-year LAI profiles, gap filling and smoothing to eliminate possible high temporal frequency residual artifacts. The inter-annual variations in LAI were finally quantified by scaling and shifting the seasonal cli…
Data-based modeling of vehicle crash using adaptive neural-fuzzy inference system
2014
Vehicle crashes are considered to be events that are extremely complex to be analyzed from the mathematical point of view. In order to establish a mathematical model of a vehicle crash, one needs to consider various areas of research. For this reason, to simplify the analysis and improve the modeling process, in this paper, a novel adaptive neurofuzzy inference system (ANFIS-based) approach to reconstruct kinematics of colliding vehicles is presented. A typical five-layered ANFIS structure is trained to reproduce kinematics (acceleration, velocity, and displacement) of a vehicle involved in an oblique barrier collision. Subsequently, the same ANFIS structure is applied to simulate different…
Visualizing Time Series State Changes with Prototype Based Clustering
2009
Modern process and condition monitoring systems produce a huge amount of data which is hard to analyze manually. Previous analyzing techniques disregard time information and concentrate only for the indentification of normal and abnormal operational states. We present a new method for visualizing operational states and overall order of the transitions between them. This method is implemented to a visualization tool which helps the user to see the overall development of operational states allowing to find causes for abnormal behaviour. In the end visualization tool is tested in practice with real time series data collected from gear unit.
Dosage individualization of erythropoietin using a profile-dependent support vector regression
2003
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its side-effects and the phenomenon of potential resistance which some individuals suffer all justify the need for a model which is capable of optimizing dosage individualization. A group of 110 patients and several patient factors were used to develop the models. The support vector regressor (SVR) is benchmarked with the classical multilayer percept…
Effect of a distal weight-bearing implant on visual analog scale scores in 23 transfemoral amputees.
2018
The objective of this interrupted time series clinical trial was to evaluate the effect of a distal weight-bearing implant on well-being in patients with transfemoral amputations using the visual analog scale (VAS). A total of 29 patients from five hospitals with previous transfemoral amputations were surgically implanted with an osseoanchored implant with a distal spacer that allows a direct load on the residuum over the distal surface of the socket. Patients were followed for a 14-month period and assessed presurgically and postsurgically using the VAS. The Wilcoxon test was used to evaluate the differences between variables. VAS mean scores improved significantly after intervention. Sign…