Search results for "time-dependent density functional theory."

showing 10 items of 59 documents

Acridine orange in a pumpkin-shaped macrocycle: Beyond solvent effects in the UV–visible spectra simulation of dyes

2010

Abstract We present simulation of the UV–visible spectra of acridine orange, a widely used photosensitizer for in vivo studies due to its highly environment-dependent spectroscopic properties. This dye has been investigated both in its protonated and neutral forms, either isolated or embedded in a pumpkin-shaped macromolecular cycle (cucurbit-7-uril), using time-dependent density functional theory techniques. To model this macromolecular cycle, two strategies are taken into account, allowing decoupling of the geometric and electrostatic influences of the host on the guest molecules. Experimental data are well-reproduced when using an embedding electrostatic technique, suggesting that such a…

Dye010405 organic chemistryAcridine orangeProtonationTime-dependent density functional theory010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundchemistryDensity functional theoryTime-dependent density functional theoryMolecule[CHIM]Chemical SciencesPhotosensitizerDensity functional theoryPhysical and Theoretical ChemistrySolvent effectsComputingMilieux_MISCELLANEOUSMacromolecule
researchProduct

Time-dependent density-functional theory in the projector augmented-wave method

2008

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear e…

ELECTRONIC EXCITATIONStime propagationGeneral Physics and AstronomySpectral linelaw.inventionlinear responseATOMSlawQuantum mechanicsSPECTRAPhysical and Theoretical ChemistryEXCHANGEEQUATIONSPhysicsREAL-TIMEPhysicsAtoms in moleculesTime-dependent density functional theorytime-dependent density-functional theoryNonlinear systemProjectorRESPONSE THEORYphotoabsorptionExcited statenon-linear responseProjector augmented wave methodDensity functional theoryCLUSTERSAPPROXIMATION
researchProduct

Quantum chemistry of the excited state: 2005 overview

2005

The present contribution contains an overview of quantum-chemical methods and strategies to compute and interpret spectroscopic and photochemical phenomena in molecular systems. The state of the art for the quantum chemistry of the excited state is reviewed, focusing in the advantages and disadvantages of the most commonly employed computational methods, from the single configurational procedures like CI-Singles (CIS), propagator approaches, and Coupled-Cluster (CC) techniques, to the more sophisticated multiconfigurational treatments, with particular emphasis on perturbation theory, the CASPT2 approach. Also, a short summary on the performance, lights, and shadows of the popular TDDFT meth…

Field (physics)ChemistryPropagatorTime-dependent density functional theoryMolecular systemsCondensed Matter PhysicsBiochemistryQuantum chemistryQuantum mechanicsExcited statePotential energy surfaceStatistical physicsPhysical and Theoretical ChemistryPerturbation theoryJournal of Molecular Structure: THEOCHEM
researchProduct

Survival of Floquet–Bloch States in the Presence of Scattering

2021

Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch elec…

Floquet theoryLetterField (physics)BioengineeringElectrons02 engineering and technologyElectronElectronic structureSettore FIS/03 - Fisica Della Materiadriven two-level system with dissipationGeneral Materials ScienceFloquet−Bloch statesPhysicsScatteringMechanical EngineeringRelaxation (NMR)General ChemistryTime-dependent density functional theorydissipation021001 nanoscience & nanotechnologyCondensed Matter Physicstime and angle-resolved photoemission spectroscopy3. Good healthFloquet-Bloch statestime-dependent density functional theoryFloquetBloch statesQuantum electrodynamicsddc:660Density functional theory0210 nano-technologytime- and angle-resolved photoemission spectroscopyNano Letters
researchProduct

Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT

2017

We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.

FullereneFOS: Physical sciences02 engineering and technologyElectron01 natural sciences7. Clean energySettore FIS/03 - Fisica Della MateriaSpectral linelaw.inventionlawPhysics - Chemical PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics - Atomic and Molecular Clusters010306 general physicsChemical Physics (physics.chem-ph)PhysicsAtoms in moleculesTime-dependent density functional theory021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserElectronic Optical and Magnetic MaterialsExcited stateAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)0210 nano-technologyComputational Methods
researchProduct

Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets

2019

International audience; We studied the behavior of doxorubicin (DOX; an anticancer drug) molecules loaded on a boron nitride oxide nanosheet (BNO-NS) using the density functional theory (DFT), time-dependent density functional theory (TDDFT), and molecular dynamic (MD) simulation methods. We found that DOX molecules in pi-pi or covalent interaction with BNO-NS preserve their optical properties in water. Moreover, the BNO-NS vector allowed stabilizing the DOX molecules on a cellular membrane contrary to isolated DOX that randomly moved in the solvent box without any interaction with the cell membrane. From these results, we conclude that hydrophilic BNO-NS represents a good candidate for DOX…

General Physics and Astronomy02 engineering and technologyMolecular dynamics010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsCell membranechemistry.chemical_compoundmedicinepolycyclic compoundsTime-dependent density functional theoryMolecule[CHIM]Chemical SciencesDoxorubicin[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBoron nitride oxide nanosheetsNanosheet[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Therapeutic agentsChemistrytechnology industry and agricultureSurfaces and InterfacesGeneral ChemistryTime-dependent density functional theory021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsSolventmedicine.anatomical_structureBoron nitrideDrug deliveryBiophysics0210 nano-technologymedicine.drug
researchProduct

Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations

2022

This study was financially supported by Flag-ERA JTC To2Dox project (S.P.) and M-ERA-NET2 project SunToChem (E.A.K.). M.G.B. thanks the support from the Program for the Foreign Experts (Grant No. W2017011) offered by Chongqing University of Posts and Telecommunications and the National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange (Grant No. DL2021035001L), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), NCN project 2018/31/B/ST4/00924. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01…

Inorganic ChemistryCondensed Matter::Materials Sciencetime-dependent density functional theoryabsorption spectraphotocatalystGeneral Chemical EngineeringPhysics::Atomic and Molecular ClustersTiO2transition contribution mapsGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]Condensed Matter PhysicsTiO2; photocatalyst; time-dependent density functional theory; absorption spectra; transition contribution mapsCrystals
researchProduct

Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure

2020

Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle s…

Materials scienceDephasingAtom and Molecular Physics and OpticsFOS: Physical sciencesGeneral Physics and AstronomyNanoparticlePhysics::Optics02 engineering and technology010402 general chemistry01 natural sciencesAtomic unitsArticleplasmon dephasingPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceAbsorption (electromagnetic radiation)Plasmonatomic-scaleatomic scaleChemical Physics (physics.chem-ph)Plasmonic nanoparticlesCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicslocalized surface plasmonGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)plasmon decay021001 nanoscience & nanotechnologyCondensed Matter Physicstime-dependent density-functional theory0104 chemical sciencespintaplasmonitplasmonittime-dependent density functional theoryChemical physicsFemtosecondnanohiukkasetAstrophysics::Earth and Planetary Astrophysicshot carriers0210 nano-technologyhot electronsLocalized surface plasmon
researchProduct

Plasmon Excitations in Mixed Metallic Nanoarrays

2019

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…

Materials scienceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronoptiset ominaisuudet01 natural sciencesMolecular physicsElectromagnetic radiationHomonuclear moleculeplasmonicsnanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceSurface plasmon resonance010306 general physicsPlasmonCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Surface plasmontiheysfunktionaaliteoriaGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)molecular plasmonics021001 nanoscience & nanotechnologytime-dependent density-functional theorytime-dependent density functional theorycollective excitationQuasiparticleDensity functional theory0210 nano-technology
researchProduct

Direct hot-carrier transfer in plasmonic catalysis

2019

Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag147) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to o…

Materials sciencePhysics::Optics02 engineering and technologyTime-dependent density functional theory010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesChemical reactionSilver nanoparticle0104 chemical sciencesCatalysisCondensed Matter::Materials ScienceAdsorptionChemical physicsMoleculeMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologyPlasmonFaraday Discussions
researchProduct