Search results for "time-dependent density functional theory"
showing 10 items of 59 documents
Acridine orange in a pumpkin-shaped macrocycle: Beyond solvent effects in the UV–visible spectra simulation of dyes
2010
Abstract We present simulation of the UV–visible spectra of acridine orange, a widely used photosensitizer for in vivo studies due to its highly environment-dependent spectroscopic properties. This dye has been investigated both in its protonated and neutral forms, either isolated or embedded in a pumpkin-shaped macromolecular cycle (cucurbit-7-uril), using time-dependent density functional theory techniques. To model this macromolecular cycle, two strategies are taken into account, allowing decoupling of the geometric and electrostatic influences of the host on the guest molecules. Experimental data are well-reproduced when using an embedding electrostatic technique, suggesting that such a…
Time-dependent density-functional theory in the projector augmented-wave method
2008
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear e…
Quantum chemistry of the excited state: 2005 overview
2005
The present contribution contains an overview of quantum-chemical methods and strategies to compute and interpret spectroscopic and photochemical phenomena in molecular systems. The state of the art for the quantum chemistry of the excited state is reviewed, focusing in the advantages and disadvantages of the most commonly employed computational methods, from the single configurational procedures like CI-Singles (CIS), propagator approaches, and Coupled-Cluster (CC) techniques, to the more sophisticated multiconfigurational treatments, with particular emphasis on perturbation theory, the CASPT2 approach. Also, a short summary on the performance, lights, and shadows of the popular TDDFT meth…
Survival of Floquet–Bloch States in the Presence of Scattering
2021
Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch elec…
Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT
2017
We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.
Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets
2019
International audience; We studied the behavior of doxorubicin (DOX; an anticancer drug) molecules loaded on a boron nitride oxide nanosheet (BNO-NS) using the density functional theory (DFT), time-dependent density functional theory (TDDFT), and molecular dynamic (MD) simulation methods. We found that DOX molecules in pi-pi or covalent interaction with BNO-NS preserve their optical properties in water. Moreover, the BNO-NS vector allowed stabilizing the DOX molecules on a cellular membrane contrary to isolated DOX that randomly moved in the solvent box without any interaction with the cell membrane. From these results, we conclude that hydrophilic BNO-NS represents a good candidate for DOX…
Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations
2022
This study was financially supported by Flag-ERA JTC To2Dox project (S.P.) and M-ERA-NET2 project SunToChem (E.A.K.). M.G.B. thanks the support from the Program for the Foreign Experts (Grant No. W2017011) offered by Chongqing University of Posts and Telecommunications and the National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange (Grant No. DL2021035001L), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), NCN project 2018/31/B/ST4/00924. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01…
Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure
2020
Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle s…
Plasmon Excitations in Mixed Metallic Nanoarrays
2019
Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…
Direct hot-carrier transfer in plasmonic catalysis
2019
Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag147) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to o…