Search results for "toluene"

showing 10 items of 429 documents

CCDC 1861473: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]-imidazol-2-ylidene})-dichloro-germanium-nickel(0) toluene unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1019229: Experimental Crystal Structure Determination

2015

Related Article: Andreas M. Bünzli, Edwin C. Constable, Catherine E. Housecroft, Alessandro Prescimone, Jennifer A. Zampese, Giulia Longo, Lidón Gil-Escrig, Antonio Pertegás, Enrique Ortí, Henk J. Bolink|2015|Chemical Science|6|2843|doi:10.1039/C4SC03942D

(6-Phenyl-22'-bipyridine)-bis(5'-(pyridin-2-yl)-11':3'1''-terphenyl-4'-yl)-iridium hexafluorophosphate toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 796284: Experimental Crystal Structure Determination

2011

Related Article: C.H.Devillers, A.K.D.Dime, H.Cattey, D.Lucas|2011|Chem.Commun.|47|1893|doi:10.1039/c0cc04309e

(Ethanol)-(triphenyl(porphyrin-5-yl)phosphoniumato)-magnesium(ii) hexafluorophosphate toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1840739: Experimental Crystal Structure Determination

2018

Related Article: Benjamin M. Day, Fu-Sheng Guo, Sean R. Giblin, Akira Sekiguchi, Akseli Mansikkamäki, Richard A. Layfield|2018|Chem.-Eur.J.|24|16779|doi:10.1002/chem.201804776

(eta6-toluene)-(eta3-1234-tetrakis(trimethylsilyl)cyclobut-2-en-1-yl)-potassiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 848591: Experimental Crystal Structure Determination

2013

Related Article: R.V.Smaliy,M.Beauperin,A.Mielle,P.Richard,H.Cattey,A.N.Kostyuk,J.-C.Hierso|2012|Eur.J.Inorg.Chem.||1347|doi:10.1002/ejic.201101142

(mu~2~-11'22'44'-hexakis(diphenylphosphino)ferrocene)-hexacarbonyl-di-molybdenum benzene toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 848593: Experimental Crystal Structure Determination

2013

Related Article: R.V.Smaliy,M.Beauperin,A.Mielle,P.Richard,H.Cattey,A.N.Kostyuk,J.-C.Hierso|2012|Eur.J.Inorg.Chem.||1347|doi:10.1002/ejic.201101142

(mu~2~-11'22'44'-hexakis(diphenylphosphino)ferrocene)-tetrachloro-di-platinum(ii) dichloromethane toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Production of Nano-Sized Co<sub>3</sub>O<sub>4</sub> by Pyrolysis of Organic Extracts

2016

The most promising application field of materials based on nano-sized Co3O4 is catalysis. The method of production is one of the factors, which greatly affects the catalytic activity of Co3O4 catalysts. The aim of this research is to study possibilities of a new promising extractive-pyrolytic method (EPM) for the production of Co3O4 nanopowders and silica- and ceria-supported Co3O4 nanocomposites. Solutions of cobalt hexanoate in hexanoic acid and trioctylammonium tetrachlorocobaltate in toluene preliminary produced by solvent extraction were used as precursors. The precursors’ thermal stability, phase composition, morphology and the magnetic properties of the final products of pyrolysis we…

010302 applied physicsHexanoic acidNanocompositeMaterials scienceMechanical EngineeringInorganic chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTolueneCatalysischemistry.chemical_compoundChemical engineeringchemistryMechanics of Materials0103 physical sciencesGeneral Materials ScienceThermal stabilityCrystallite0210 nano-technologyCobaltPyrolysisKey Engineering Materials
researchProduct

Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation

2019

10 Figuras.- 2 Tablas.- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

010405 organic chemistryChemistryStructural waterProcess Chemistry and TechnologyInorganic chemistryCationic polymerizationVOCs oxidationchemistry.chemical_elementNanoparticleManganeseCavities010402 general chemistry01 natural sciences7. Clean energyOxygenTolueneCatalysisHydrothermal circulationToluene oxidation0104 chemical sciencesCatalysischemistry.chemical_compoundManganese oxideToluene
researchProduct

Arene C−H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of S N Ar Chemistry

2020

The reactivity of the electron-rich anionic Al(I) ('aluminyl') compound K 2 [(NON)Al] 2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di- tert -butyl-9,9-dimethylxanthene) towards mono- and disubstituted arenes is reported. C-H activation chemistry with n -butylbenzene gives exclusively the product of activation at the arene meta position. Mechanistically, this transformation proceeds in a single step via a concerted Meisenheimer-type transition state. Selectivity is therefore based on similar electronic factors to classical S N Ar chemistry, which implies the destabilization of transition states featuring electron-donating groups in either the ortho or the para positions. In the cases of tolu…

010405 organic chemistryChemistryXyleneSubstituentGeneral Chemistry010402 general chemistry01 natural sciencesMedicinal chemistryTolueneCatalysisTransition state0104 chemical sciences3. Good healthchemistry.chemical_compoundMeta-Nucleophilic aromatic substitutionReactivity (chemistry)SelectivityAngewandte Chemie International Edition
researchProduct

Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: …

2017

The objective of present study was to identify volatile organic compounds (VOCs) emitted from several sources (fuels, traffic, landfills, coffee roasting, a street-food laboratory, building work, indoor use of incense and candles, a dental laboratory, etc.) located in Palermo (Italy) by using canister autosamplers and gas chromatography-mass spectrometry (GC-MS) technique. In this study, 181 VOCs were monitored. In the atmosphere of Palermo city, propane, butane, isopentane, methyl pentane, hexane, benzene, toluene, meta- and para-xylene, 1,2,4 trimethyl benzene, 1,3,5 trimethyl benzene, ethylbenzene, 4 ethyl toluene and heptane were identified and quantified in all sampling sites.

010504 meteorology & atmospheric sciencescanisterHealth Toxicology and Mutagenesislcsh:Medicine010501 environmental sciences01 natural sciencesEthylbenzenePalermoArticleGas Chromatography-Mass Spectrometrychemistry.chemical_compoundPropaneCitiesBenzeneindoor0105 earth and related environmental sciencesvolatile organic compounds (VOCs)Air PollutantsVolatile Organic Compoundscanister; indoor; volatile organic compounds (VOCs); PalermoAtmospherelcsh:RPublic Health Environmental and Occupational HealthButaneToluenePentaneIsopentanechemistryItalyEnvironmental chemistryEnvironmental scienceGas chromatography–mass spectrometryEnvironmental MonitoringInternational Journal of Environmental Research and Public Health
researchProduct