Search results for "transducer"
showing 10 items of 173 documents
Experimental Method for Determining Forces at Bending of Perforated Plates
2017
Abstract This paper describes the method of calculating the forces which appear at the bending of perforated plates with holes of different shapes and placed in different patterns, by means of a dynamometric table which uses resistive tensometric transducers (strain gauges). It also describes an instrument for the recording of data from the dynamometric table, a tool created with the aid of the “TestPoint” software which, beneath the data recording, ensures the filtering and statistic processing of data. The obtained results are displayed in comparative graphs for six types of perforated plates, as well as for an unperforated plate.
Thermo-optic control of dielectric-loaded plasmonic waveguide components
2010
International audience; We report preliminary results on the development of compact (length 20%) is demonstrated with MZI-and WRR-based components, and efficient (similar to 30%) rerouting is achieved with DC switches. (C) 2010 Optical Society of America
Polarimetric Plasmonic Sensing with Bowtie Nanoantenna Arrays
2015
We propose a polarimetric plasmonic biosensor based on bowtie nanoantenna array transducers. Through numerical simulations, based on the finite element method (FEM), we study the phase retardation between the components of light polarized parallel and perpendicular to the major axis of the bowties within the arrays. From a design for high volumetric sensitivity at a wavelength of 780 nm, sensitivities ∼5 rad/RIU is obtained, corresponding to a detection limit of ∼10−7 when using a polarimetric readout platform. Similarly, surface sensitivity of the same array is evaluated by simulating the phase retardation changes induced by the coverage of bioreceptors and analytes of the metallic nanostr…
Pressure sensor development based on Dielectric Electro Active Polymers
2012
The Dielectric Electro Active Polymer's (DEAP's) sensing capabilities is one of the main trio-characteristics of the material applicable area's, the trio-formations as applicable use are actuator, transducer and last but not least sensor. It is noted here that one of the main value propositions whenever DEAP material is used is the dual characteristics as the sensing/actuating capability.
Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer
2015
Abstract An erbium doped (Er3+) fiber optic laser is proposed for magnetic field measurement. A pair of FBGs glued onto a magnetostrictive material (Terfenol-D rod) modulates the laser wavelength operation when subject to a static or a time dependent magnetic field. A passive interferometer is employed to measure the laser wavelength changes due to the applied magnetic field. A data acquisition hardware and a LabVIEW software measure three phase-shifted signals at the output coupler of the interferometer and process them using two distinct demodulation algorithms. Results show that sensitivity to varying magnetic fields can be tuned by introducing a biasing magnetic field. A maximum error o…
Feedback Biasing Based Adjustable Gain Ultrasound Preamplifier for CMUTs in 45nm CMOS
2018
As CMOS technology is scaled down, supply voltages are decreasing and intrinsic gain of the nanoscale CMOS transistors is dropping while the threshold voltages of transistors are remaining relatively constant. In such scaled down nanoscale CMOS technologies, conventional vertical stacking architectures (for example. cascode architectures) for high-gain becomes no more attractive. In this paper we present the analysis and design of a feedback biasing based adjustable gain ultrasound preamplifier which is capable of amplifying signals from 15 MHz to 45 MHz from Capacitive Micromachined Ultrasound Transducers (CMUTs) in 45nm CMOS technology for medical ultrasound imaging applications. From the…
Focusing of surface-acoustic-wave fields on (100) GaAs surfaces
2003
Focused surface-acoustic waves (SAWs) provide a way to reach intense acoustic fields for electro- and optoacoustic applications on semiconductors. We have investigated the focusing of SAWs by interdigital transducers (IDTs) deposited on (100)-oriented GaAs substrates. The focusing IDTs have curved fingers designed to account for the acoustic anisotropy of the substrate. Different factors that affect focusing, such as the aperture angle and the configuration of the IDT fingers, were systematically addressed. We show that the focusing performance can be considerably improved by appropriate choice of the IDT metal pads, which, under appropriate conditions, create an acoustic waveguide within t…
Low Cost Electrical Current Sensors with Extremely Wide Measurement Range
2015
A new electrical current measurement system is presented. It features the ability to dynamically and automatically change its measurement range to the sensed current amplitude without user action. It also exhibits galvanic isolation and near zero insertion loss characteristics.
Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer
2012
Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft …
On the use of EMI for the assessment of dental implant stability
2014
The achievement and the maintenance of dental implant stability are prerequisites for the long-term success of the osseointegration process. Since implant stability occurs at different stages, it is clinically required to monitor an implant over time, i.e. between the surgery and the placement of the artificial tooth. In this framework, non-invasive tests able to assess the degree of osseointegration are necessary. In this paper, the electromechanical impedance (EMI) method is proposed to monitor the stability of dental implants. A 3D finite element model of a piezoceramic transducer (PZT) bonded to a dental implant placed into the bone was created, considering the presence of a bone- impla…