Search results for "transesterification"
showing 10 items of 37 documents
Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends
2017
Abstract Pulsed Electric Field (PEF) treatment was used as pre-treatment on the microalgae strain Auxenochlorella protothecoides (A.p.) prior to organic solvent extraction of lipids. Experiments were performed on fresh biomass from mixotrophic or autotrophic culture which both had an evaluated lipid content of 30–35% of cell dry weight. Lipid yield was determined gravimetrically and compared to the reference lipid content assessed by bead-milling and subsequent Soxhlet extraction. The biomass was concentrated at 10% w/w solids prior to PEF-treatment and further dewatered afterwards to approximately 25% w/w before extraction. PEF-treatment with an energy input of 1.5 MJ per kilogram of dry m…
Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production
2019
Abstract The main objective of this work comprises the investigation of biodiesel production from rapeseed oil using potassium impregnated Fe3O4-CeO2 nanocatalyst. The various concentration of potassium impregnated Fe3O4-CeO2 was screened for catalytic conversion of rapeseed oil to triglyceride methyl ester. The 25 wt % potassium impregnated Fe3O4-CeO2 nanocatalyst showed best biodiesel production. Nanocatalyst was characterized by FTIR, XRD, SEM, TEM, BET and Hammett indicator for basicity test. The characterization of biodiesel was performed with GC-MS, 1H and 13C NMR. Moreover, the optimum reaction parameters such as catalyst amount (wt %), oil to methanol ratio, reaction time and reacti…
Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions
2012
A new efficient and expeditious route to the synthesis of aliphatic polycarbonates, in solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as a catalyst precursor, is described. The protocol consists of a two-step polymerization process involving the transesterification of dimethyl carbonate (DMC) with linear alkane diols and leading to high molecular weight homopolymers. The reaction went to completion quantitatively with the liberation of methanol as the only by-product. The in situ formation of N-heterocyclic carbene species resulting from BMIM-2-CO2 decarboxylation is suggested to be a key feature of the condensation process. The protocol was then …
Characterisation of humic substances by acid catalysed transesterification
2002
Abstract The chemical composition of low molecular weight moieties linked to the core structures of humic substances (HS) are of substantial importance for the understanding of the chemical structures and mode of interactions of HS with other substances in the environment. In this study a novel approach to characterise certain low molecular weight compounds bound to HS is suggested. The method includes transesterification (TE) of ester and amide bound structures, and esterification (E) of free carboxylic groups using acid catalysed methanolysis followed by gas chromatography (GC)–mass spectrometry (MS) and GC-FID analysis. Methanolysis of five HS of different origin, demonstrated the presen…
High temperature solid-catalized transesterification for biodiesel production
2010
Biodiesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources. Biodiesel is a mixture of monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats, mainly made of fatty acid glycerides. It is produced by transesterification processes in which oil or fat are reacted with a monohydric alcohol in the presence of a catalyst. The transesterification process is affected by reaction conditions, alcohol to oil molar ratio, type of alcohol, type and amount of catalysts, temperature and purity of reactants. Heterogeneous acid catalysts are quite efficient in promoting the…
Enzymatic biodiesel: Challenges and opportunities
2014
The chemical-catalyzed transesterification of vegetable oils to biodiesel has been industrially adopted due to its high conversion rates and low production time. However, this process suffers from several inherent drawbacks related to energy-intensive and environmentally unfriendly processing steps such as catalyst and product recovery, and waste water treatment. This has led to the development of the immobilized enzyme catalyzed process for biodiesel production which is characterized by certain environmental and economical advantages over the conventional chemical method. These include room-temperature reaction conditions, elimination of treatment costs associated with recovery of chemical…
Catalytic transesterification of Pistacia chinensis seed oil using HPW immobilized on magnetic composite graphene oxide/cellulose microspheres
2018
Abstract In the present study, magnetic composite graphene oxide/cellulose (GO/CM@Fe3O4) microspheres were prepared as support material, which are cost-efficient, non-toxic and environmental friendly. The microspheres with higher adsorption capacity were further modified using triethylene tetramine (TETA), and H3PW12O40 (HPW) was immobilized to form GO/CM-NH2@Fe3O4-HPW microspheres as heterogeneous catalyst for biodiesel production. The novel heterogeneous catalyst was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and X-ray diffractometry (XRD). For the first time, GO/CM-NH2@Fe3O4--HPW was applied in the tr…
A thermo-alkaline lipase from a new thermophileGeobacillus thermodenitrificansAV-5 with potential application in biodiesel production
2015
BACKGROUND A thermophilic lipase-producing Geobacillus thermodenitrificans strain AV-5 was isolated from the Mushroom Spring of Yellowstone National Park in WY, USA and studied as a source of lipase for transesterification of vegetable oils to biodiesel. RESULTS A maximum activity of 330 U mL−1 was produced on 2% (v/v) waste cooking oil at 50 °C, pH 8, aeration rate of 1 vvm and agitation speed of 400 rpm. However, the higher lipase productivity (14.04 U mL−1 h−1) was found at a volumetric oxygen transfer coefficient (kLa) value of 18.48 h−1. The partially purified lipase had a molecular weight, temperature and pH optimum of 50 kDa, 65 °C and pH 9, respectively, and was thermo-alkali stable…
Torque rheometry investigation of model transreactions involving condensation polymers: I. Polyesters
2005
The chemical transformations taking place when poly(ethylene terephthalate) (PET) or poly(ethylene naphthalate) (PEN) are blended in the melt with different low molar mass substances containing hydroxyl, carboxyl, or amine functional groups have been investigated as models of the transreactions, undergone by the polyesters in reactive blending operations. The polyester molecular weight changes caused by the alcoholysis, acidolysis, aminolysis, and esterolysis reactions have been monitored by torque-rheometry, using a Brabender Plasticorder static mixer. The degradation of the polyesters by hydrolysis was also studied, under similar conditions, by the addition of a water-releasing substance …
Cutinases: Characteristics and Insights in Industrial Production
2021
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycero…