Search results for "trapping"
showing 10 items of 266 documents
GaN and SiC Device Characterization by a Dedicated Embedded Measurement System
2023
This work proposes a comparison among GaN and SiC device main parameters measured with a dedicated and low-cost embedded system, employing an STM32 microcontroller designed to the purpose. The system has the advantage to avoid the use of expensive laboratory measurement equipment to test the devices, allowing to obtain their behavior in operating conditions. The following KPIs (Key Performance Indicators) are measured and critically compared: threshold voltage, on-resistance and input capacitance. All the measurements are carried out in a short time interval and on a wide range of switching frequencies, ranging from 10 kHz to 1 MHz. This investigation is focused on the deviation of the figu…
Optical tweezing using tunable optical lattices along a few-mode silicon waveguide
2018
International audience; Fourteen years ago, optical lattices and holographic tweezers were considered as a revolution, allowing for trapping andmanipulating multiple particles at the same time using laser light. Since then, near-field optical forces have arousedtremendous interest as they enable efficient trapping of a wide range of objects, from living cells to atoms, in integrateddevices. Yet, handling at will multiple objects using a guided light beam remains a challenging task for current on-chipoptical trapping techniques. We demonstrate here on-chip optical trapping of dielectric microbeads and bacteria usingone-dimensional optical lattices created by near-field mode beating along a f…
Molecular Selectivity of CH 4 –C 2 H 6 Mixed Hydrates: A GCMC Study
2021
International audience; In this paper, we report the first grand canonical Monte Carlo simulation study aiming at characterizing the competitive trapping of CH4 and C2H6 molecules into clathrate hydrates under temperature conditions typical of those encountered at the surface of Titan. Various compositions of the fluid in contact with the clathrate phase have been considered in the simulations, including pure methane, pure ethane, and mixed fluids made of various methane/ethane ratios. The trapping isotherms obtained from the simulations clearly show that ethane molecules can be enclathrated at lower pressures than methane molecules. In addition, they provide evidence that the methane molec…
Empowering Photovoltaics with Smart Light Management Technologies
2021
The daily Sun supplies the continents of the Earth with four times more energy than humanity consumes in a year. This enormous potential of solar energy to generate clean energy is therefore driving great efforts to replace conventional and unsustainable fossil fuel consumption that damages our climate and our environment. Solar photovoltaic (PV) is emerging as the fastest growing renewable energy technology in the world, yet its share to the electricity production currently is less than 3%. While coal and gas remain key to electricity production, the climate crisis demands a fast transition to a carbon-neutral energy system. In the year 2019, the PV industry produced solar panels with a ca…
A reservoir trap for antiprotons
2015
We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…
Pressure-Induced High Spin State in [Fe(btr)2(NCS)2]·H2O (btr = 4,4′-bis-1,2,4-triazole)
2000
Application of hydrostatic pressure (≤ 10.5 kbar) on the two-dimensional spin transition compound [Fe(btr)2(NCS)2]·H2O (btr = 4,4‘-bis-1,2,4-triazole) results in an unexpected stabilization of the HS state. On release of the pressure, the HS state is found to be partially trapped. After thermal relaxation of the metastable HS state obtained by the LIESST effect (light-induced excited spin state trapping), a pure LS state is obtained in contrast to the pressure experiments. This different behavior supports a structural phase transition as the likely basis of the pressure-induced HS state.
Spin Trapping of Carbon-Centered Ferrocenyl Radicals with Nitrosobenzene
2015
In contrast to metal centered 17 valence electron radicals, such as [Mn(CO)5]•, ferrocenium ions [Fe(C5H5)2]+ (1+), [Fe(C5Me5)2]+ (2+), [Fe(C5H5)(C5H4Et)]+ (3+), [Fe(C5H5)(C5H4NHC(O)Me)]+ (4+), and [Fe(C5H5)(C5H4NHC(S)Me)]+ (5+) do not add to nitrosobenzene PhNO to give metal-coordinated stable nitroxyl radicals. In the presence of the strong and oxidatively stable phosphazene base tert-butylimino-tris(dimethylamino)phosphorane, the quite acidic ferrocenium ions 1+–5+ are deprotonated to give a pool of transient and persistent radicals with different deprotonation sites [1–Hx]•–[5–Hx]•. One rather persistent iron-centered radical [4–HN]•, deprotonated at the nitrogen atom, has been detected…
Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling
2009
When dealing with very large datasets of functional data, survey sampling approaches are useful in order to obtain estimators of simple functional quantities, without being obliged to store all the data. We propose here a Horvitz--Thompson estimator of the mean trajectory. In the context of a superpopulation framework, we prove under mild regularity conditions that we obtain uniformly consistent estimators of the mean function and of its variance function. With additional assumptions on the sampling design we state a functional Central Limit Theorem and deduce asymptotic confidence bands. Stratified sampling is studied in detail, and we also obtain a functional version of the usual optimal …
Trapping of Continuous-Time Quantum walks on Erdos-Renyi graphs
2011
We consider the coherent exciton transport, modeled by continuous-time quantum walks, on Erd\"{o}s-R\'{e}ny graphs in the presence of a random distribution of traps. The role of trap concentration and of the substrate dilution is deepened showing that, at long times and for intermediate degree of dilution, the survival probability typically decays exponentially with a (average) decay rate which depends non monotonically on the graph connectivity; when the degree of dilution is either very low or very high, stationary states, not affected by traps, get more likely giving rise to a survival probability decaying to a finite value. Both these features constitute a qualitative difference with re…
Brownian motion in trapping enclosures: Steep potential wells, bistable wells and false bistability of induced Feynman-Kac (well) potentials
2019
We investigate signatures of convergence for a sequence of diffusion processes on a line, in conservative force fields stemming from superharmonic potentials $U(x)\sim x^m$, $m=2n \geq 2$. This is paralleled by a transformation of each $m$-th diffusion generator $L = D\Delta + b(x)\nabla $, and likewise the related Fokker-Planck operator $L^*= D\Delta - \nabla [b(x)\, \cdot]$, into the affiliated Schr\"{o}dinger one $\hat{H}= - D\Delta + {\cal{V}}(x)$. Upon a proper adjustment of operator domains, the dynamics is set by semigroups $\exp(tL)$, $\exp(tL_*)$ and $\exp(-t\hat{H})$, with $t \geq 0$. The Feynman-Kac integral kernel of $\exp(-t\hat{H})$ is the major building block of the relaxatio…