Search results for "trkb"

showing 10 items of 23 documents

Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide

2016

International audience; Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n=6), physical exercise (n=6) or a combination of both (n=6) …

Male0301 basic medicinemedicine.medical_specialtyNitric Oxide Synthase Type IIIEndotheliumHippocampusPhysical exerciseTropomyosin receptor kinase BHippocampusNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicine[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemphysical exercisenitric oxideNeurotrophic factorsPhysical Conditioning AnimalInternal medicinemedicineAnimalsReceptor trkBRats WistarCerebral CortexBrain-derived neurotrophic factorbiologyChemistry[SCCO.NEUR]Cognitive science/NeuroscienceGeneral Neurosciencebrain-derived neurotrophic factorTrkB[ SDV.MHEP.CSC ] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemRatsCerebrovascular Disorders030104 developmental biologyEndocrinologymedicine.anatomical_structurecarotid arteries occlusionnervous system[ SCCO.NEUR ] Cognitive science/Neurosciencebiology.proteinEndothelium VascularNeuroscience030217 neurology & neurosurgeryNeurotrophinEuropean Journal of Neuroscience
researchProduct

''Comparative Effect of Treadmill Exercise on Mature BDNF Production in Control versus Stroke Rats''

2012

Quirie, Aurore | Hervieu, Marie | Garnier, Philippe | Demougeot, Celine | Mossiat, Claude | Bertrand, Nathalie | Martin, Alain | Marie, Christine | Prigent-Tessier, Anne; International audience; ''Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this purpo…

MaleBEHAVIORAL RECOVERYTropomyosin receptor kinase BBiochemistryHippocampus0302 clinical medicineNerve Growth FactorHippocampus (mythology)StrokeCerebral Cortex0303 health sciencesNeuronal PlasticityMultidisciplinaryMOTOR RECOVERYQRTRKBNeurochemistryStrokemedicine.anatomical_structureNeurologyOrgan SpecificityCerebral cortex[ SCCO.NEUR ] Cognitive science/NeuroscienceMedicineNeurochemicalsmedicine.symptomResearch ArticleEXPRESSIONmedicine.medical_specialtyHIPPOCAMPAL PLASTICITYCORTEXCerebrovascular DiseasesAnimal TypesScienceBlotting WesternSynaptophysinEnzyme-Linked Immunosorbent AssayPhysical exerciseCONTROLLED-TRIALLesion03 medical and health sciencesPhysical Conditioning AnimalInternal medicineNeuroplasticitymedicineAnimalsLaboratory AnimalsSports and Exercise MedicineProtein PrecursorsRats WistarBiologyIschemic Stroke030304 developmental biologyBrain-derived neurotrophic factorbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceBrain-Derived Neurotrophic FactorTRKB''AXONAL-TRANSPORTmedicine.diseaseCorpus StriatumRatsDisease Models AnimalEndocrinology''FOCAL BRAIN ISCHEMIAnervous systemFOCAL BRAIN ISCHEMIAExercise TestPhysical therapyBlood VesselsVeterinary ScienceEndothelium Vascularbusiness030217 neurology & neurosurgerySynaptic PlasticityNeuroscienceNEUROTROPHIC FACTOR
researchProduct

Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

2014

International audience; Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabo…

MalePlasminlcsh:MedicineTropomyosin receptor kinase BBiochemistryMechanical Treatment of SpecimensHippocampusTissue plasminogen activator[SCCO]Cognitive scienceCell SignalingNeurotrophic factorsNeurobiology of Disease and RegenerationMedicine and Health SciencesMembrane Receptor SignalingFibrinolysinBRAINlcsh:ScienceMultidisciplinaryNeuromodulationNeurotransmitter Receptor SignalingNeurochemistryLong-term potentiationNeurotransmittersDENDRITIC GROWTHNEURONAL DEATHRECEPTORSElectroporationNeurologySpecimen DisruptionTranexamic AcidTissue Plasminogen ActivatorACTIVATORTPANMDA receptor[ SCCO ] Cognitive scienceLONG-TERM POTENTIATIONResearch ArticleSignal Transductionmedicine.drugmedicine.medical_specialtyN-MethylaspartateResearch and Analysis MethodsNeuropharmacologyDevelopmental NeuroscienceInternal medicinemedicineAnimalsReceptor trkBProtein PrecursorsRats WistarSPATIAL MEMORYBrain-derived neurotrophic factorBrain-Derived Neurotrophic Factorlcsh:RBiology and Life SciencesCell BiologySYNAPTIC-PLASTICITYRetractionEndocrinologynervous systemSpecimen Preparation and TreatmentSynaptic plasticitylcsh:QMolecular NeuroscienceDizocilpine MaleateNEUROTROPHIC FACTORNeuroscienceSynaptic PlasticityPLoS ONE
researchProduct

BDNF, but not NT-4, is necessary for normal development of Meissner corpuscles.

2005

Abstract Meissner corpuscles are rapidly adapting cutaneous mechanoreceptors depending for development on TrkB expressing sensory neurons, but it remains to be established which of the known TrkB ligands, BDNF or NT-4, is responsible of this dependence. In this study we analyze Meissner corpuscles in the digital pads of mice with target mutations in the genes encoding for either BDNF or NT-4, using immunohistochemistry and transmission-electron microscopy, and they were identified based on their morphology and expression of S100 protein. All wild-type animals as well as NT-4 −/− animals and BDNF and NT4 heterozygous animals have Meissner corpuscles that are normal in number and size. Howeve…

Pathologymedicine.medical_specialtyRatónTropomyosin receptor kinase BLigandsS100 proteinMicemedicineAnimalsReceptor trkBNerve Growth FactorsBrain-derived neurotrophic factorMice KnockoutbiologyChemistryGeneral NeuroscienceBrain-Derived Neurotrophic FactorCell biologyMechanoreceptorMice Inbred C57BLmedicine.anatomical_structurenervous systemMeissner Corpusclebiology.proteinImmunohistochemistryMechanoreceptorsNeurotrophinNeuroscience letters
researchProduct

A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors.

2003

Recent evidence indicates that trophic factors can exert fast effects on neurones and so alter synaptic plasticity. Here, we focus on brain-derived neurotrophic factor (BDNF), which exerts a modulatory action at hippocampal synapses that are involved in learning and memory, and at the first pain synapse between primary sensory neurones and dorsal horn neurones. Hippocampal and sensory neurones share some properties for the release of endogenous BDNF. In the Schaffer collateral pathway of the hippocampus, binding of BDNF to high-affinity trkB receptors is essential for the induction of long-term potentiation, a specific type of synaptic plasticity. However, the consequences of BDNF binding t…

PharmacologyBrain-derived neurotrophic factorBrain-Derived Neurotrophic FactorPainLong-term potentiationTropomyosin receptor kinase BToxicologyHippocampusSynapsemedicine.anatomical_structurenervous systemSchaffer collateralNeurotrophic factorsMemorySynaptic plasticityMetaplasticitySynapsesmedicineHumansReceptor trkBNeurons AfferentPsychologyNeuroscienceTrends in pharmacological sciences
researchProduct

Entrectinib: a potent new TRK, ROS1, and ALK inhibitor

2015

Abstract: Introduction: Receptor tyrosine kinases (RTKs) and their signaling pathways, control normal cellular processes; however, their deregulation play important roles in malignant transformation. In advanced non-small cell lung cancer (NSCLC), the recognition of oncogenic activation of specific RTKs, has led to the development of molecularly targeted agents that only benefit roughly 20% of patients. Entrectinib is a pan-TRK, ROS1 and ALK inhibitor that has shown potent anti-neoplastic activity and tolerability in various neoplastic conditions, particularly NSCLC. Areas covered: This review outlines the pharmacokinetics, pharmacodynamics, mechanism of action, safety, tolerability, pre-cl…

Receptor Protein-Tyrosine KinasesEntrectinibNTRK1NTRK2NTRK3Receptor tyrosine kinaseEntrectinibMalignant transformationAntineoplastic AgentNeoplasmsProtein-Tyrosine KinaseALK; colorectal cancer; Entrectinib; non-small cell lung cancer; NTRK1; NTRK2; NTRK3; precision medicine; ROS1; salivary gland cancer; TrkA; TrkB; TrkC; Animals; Antineoplastic Agents; Benzamides; Humans; Indazoles; Neoplasms; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Receptor Protein-Tyrosine Kinases; Receptor; trkA; Receptor; trkB; Receptor; trkC; Pharmacology; Pharmacology (medical)Anaplastic Lymphoma KinasePharmacology (medical)salivary gland cancerProto-Oncogene ProteinbiologyTrkAPharmacology. TherapyTrkCTrkBGeneral MedicineProtein-Tyrosine KinasesReceptor Protein-Tyrosine KinaseBenzamidesmedicine.symptomROS1ReceptorHumanIndazolesmedicine.drug_classprecision medicineAntineoplastic Agentscolorectal cancerBenzamideProto-Oncogene ProteinsmedicineROS1AnimalsHumansReceptor trkBReceptor trkCReceptor trkAnon-small cell lung cancerPharmacologyAnimalReceptor Protein-Tyrosine KinasesALK inhibitorIndazoleMechanism of actionALKTrk receptorbiology.proteinCancer researchNeoplasmALK; colorectal cancer; Entrectinib; non-small cell lung cancer; NTRK1; NTRK2; NTRK3; precision medicine; ROS1; salivary gland cancer; TrkA; TrkB; TrkC; Animals; Antineoplastic Agents; Benzamides; Humans; Indazoles; Neoplasms; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Receptor Protein-Tyrosine Kinases; Receptor trkA; Receptor trkB; Receptor trkC; Pharmacology; Pharmacology (medical)Expert Opinion on Investigational Drugs
researchProduct

p27Kip1participates in the regulation of endoreplication in differentiating chick retinal ganglion cells

2015

Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27K…

Retinal Ganglion CellsretinaEndocycleCell divisionCellular differentiationChick EmbryoRetinoblastoma ProteinendoreduplicationMicevertebrateRNA Small InterferingpolyploidyMice KnockoutRGCeducation.field_of_studyCell DifferentiationEndoreduplicationCell cycleImmunohistochemistryNuclear DNAendocycleneurogenesiscell cycleRNA InterferenceCyclin-Dependent Kinase Inhibitor p27NeurogenesisPopulationDown-RegulationCell cycleBiologyRetinal ganglionRetinaPolyploidyReportAnimalsReceptor trkBEndoreduplicationeducationMolecular BiologyPloidiesDNA synthesisVertebrateCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Cell BiologyMinichromosome Maintenance Complex Component 7Molecular biologyeye diseasessense organsChickensDevelopmental BiologyCell Cycle
researchProduct

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.

2004

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by T…

Time FactorsGreen Fluorescent ProteinsReceptors Nerve Growth FactorTropomyosin receptor kinase ATransfectionTropomyosin receptor kinase CHippocampusModels BiologicalPC12 CellsReceptor Nerve Growth FactorReceptor tyrosine kinaseLow-affinity nerve growth factor receptorAnimalsReceptor trkBNerve Growth FactorsPseudopodiaCloning MolecularNeuronsbiologyDose-Response Relationship Drugmusculoskeletal neural and ocular physiologyCell DifferentiationCell BiologyDendritesImmunohistochemistryDendritic filopodiaCell biologyProtein Structure TertiaryRatsnervous systemMicroscopy FluorescenceTrk receptorembryonic structuresNeurotrophin bindingCOS Cellsbiology.proteinsense organsNeurotrophinProtein BindingSignal TransductionJournal of cell science
researchProduct

Astrocytes in culture express the full-length Trk-B receptor and respond to brain derived neurotrophic factor by changing intracellular calcium level…

2000

Abstract Although cultured astroglial cells were reported to express exclusively the truncated non-catalytic Trk B receptor for brain-derived neurotrophic factor (BDNF), we detect here, using a sensitive ribonuclease protection assay, mRNAs for both truncated (TrkB–T) and the full length catalytic (TrkB–fl) form of BDNF receptor in developing cortical astrocytes and neurons in culture. Cortical neurons and immature astroglia, such as radial glia and proliferating astrocytes, express both the protein and mRNAs for TrkB-fl and TrkB-T, whereas the differentiation of astrocytes leads to a decrease in the trkB-fl mRNA, being the truncated TrkB the predominant receptor in differentiating and conf…

Tropomyosin receptor kinase BBiologyFetusNeurotrophic factorsmedicineAnimalsReceptor trkBRNA MessengerReceptorCells CulturedBrain-derived neurotrophic factorEthanolmusculoskeletal neural and ocular physiologyGeneral NeuroscienceBrain-Derived Neurotrophic FactorCentral Nervous System DepressantsGene Expression Regulation DevelopmentalCell DifferentiationCell biologyRatsmedicine.anatomical_structurenervous systemAstrocytesembryonic structuresbiology.proteinNeurogliaCalciumSignal transductionNeuroscienceNeurotrophinAstrocyteNeuroscience letters
researchProduct

BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

2014

BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous ap…

Tropomyosin receptor kinase BBiologyHippocampal formationneurotrophinsNitric oxidelcsh:RC321-571SynapseCellular and Molecular Neurosciencechemistry.chemical_compoundnitric oxideOriginal Research Articlelcsh:Neurosciences. Biological psychiatry. Neuropsychiatrypeptide secretionsynaptic plasticityTrkBPSD95DepolarizationPeptide secretionBDNFchemistrynervous systemSynaptic plasticitybiology.proteinNeuroscienceNeurotrophinNeuroscienceFrontiers in Cellular Neuroscience
researchProduct