Search results for "turgor"
showing 10 items of 22 documents
Physio-morphological traits and drought stress responses in three wild Mediterranean taxa of Brassicaceae
2019
Crop wild relatives (CWRs) have extremely relevant roles in biodiversity conservation, in investigating phylogeny and improving abiotic stress tolerance of crop plants. We screened the variability in leaf functional traits of three CWRs of kale crops (Brassica oleracea) from Sicily, Italy, grown in pots under well-watered and drought conditions. Our aim was to highlight traits in the different genotypes of endemic Sicilian threatened taxa. We measured several structural/anatomical traits (stomatal size, density and stomatal pore index—SPI, leaf mass per area—LMA) and leaf functional traits (stomatal conductance—gs, leaf water potential—ΨL, leaf temperature (TL), leaf relative water content—…
A Cultivar-Sensitive Approach for the Continuous Monitoring of Olive (Olea europaea L.) Tree Water Status by Fruit and Leaf Sensing
2020
Sustainable irrigation is crucial to reduce water use and management costs in modern orchard systems. Continuous plant-based sensing is an innovative approach for the continuous monitoring of plant water status. Olive (Olea europaea L.) genotypes can respond to drought using different leaf and fruit physiological and morphological mechanisms. This study aimed to identify whether fruit and leaf water dynamics of two different olive cultivars were differently affected by water deficit and their response to changes of midday stem water potential (Ψstem), the most common indicator of plant water status. Plant water status indicators such as leaf stomatal conductance (gs) and Ψstem were measured…
Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)
2016
Abstract As a result of climate change a large reduction of agricultural water through improved irrigation management is a major need for agriculture sustainability. To this aim, always more sensitive sensors to monitor plant water status have been developed in recent years. Among them, the leaf patch clamp pressure probes are very promising for water management of olive but until now have been tested only in few environmental and management conditions. In this work these sensors have been tested for two consecutive years on two completely different management systems: a traditional rainfed orchard and a super high density (SHD) drip irrigated orchard. Within the SHD orchard the probes have…
Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors.
2021
A comprehensive characterization of water stress is needed for the development of automated irrigation protocols aiming to increase olive orchard environmental and economical sustainability. The main aim of this study is to determine whether a combination of continuous leaf turgor, fruit growth, and sap flow responses improves the detection of mild water stress in two olive cultivars characterized by different responses to water stress. The sensitivity of the tested indicators to mild stress depended on the main mechanisms that each cultivar uses to cope with water deficit. One cultivar showed pronounced day to day changes in leaf turgor and fruit relative growth rate in response to water w…
Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status
2019
Continuous assessment of plant water status indicators provides the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigated the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates (pp) in nectarine trees [Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem (Ψstem) and leaf water potential, leaf relative water content, leaf stomatal conductance, and fruit growth was studied across the stages of double-sigmoidal fruit development in ‘September Bright’ nectarines. Fruit relative grow…
2018
This study aims to identify the histological basis for the extraordinary, fast movement of the style in Marantaceae. Although this explosive pollination mechanism was subject of many studies, quantitative measurements to document volumetric changes have never been conducted. Based on physical parameters and limitations (poroelastic time), the movement itself is by far too fast to be explained by turgor changes solely. Therefore, we address the hypothesis that the style contains elastic structures to store energy allowing the fast movement. We provide an experimental approach in Goeppertia bachemiana to identify histological differences of styles in various states, i.e., steady, unreleased, …
Hubungan Aktivitas Nitrat Reduktase dan Kadar Klorofil Kultivar Kedelai Tahan Kekeringan
2018
<em>Plants suffering from drought stress can be indicated by the changing of character on the morphology, anatomy and physiology, characterized by inhibition of leaf growth, accelerated root growth, stomata closure and leaf curly. Cultivars that are tolerance to drought can physiologically adapted by increasing prolin level reduce the osmotic potential in order to maintain turgor in the condition of low tissue water potential. The research was aimed to study the physiological characters of drought tolerant soybean cultivar of determine the relationship of nitrate reductase activity and chlorophyll content of drought-tolerance cultivars and susceptible to drought stress conditions. The…
Ozone-induced reductions in below-ground biomass: an anatomical approach in potato
2010
[EN] Potato plants were grown in open-top chambers under three ozone concentrations during two complete cropping seasons (93 and 77 d in 2004 and 2005, respectively). The effects of chronic exposure to ozone on leaf anatomy, cell ultrastructure and crop yield were studied. Severe cell damage was found, even at ambient ozone levels, mainly affecting the spongy parenchyma and areas near the stomata. Damage to the cell wall caused loss of cell contact, and loss of turgor pressure due to tonoplast disintegration, contributed to cell collapse. Phloem sieve plates were obstructed by callose accumulation, and damaged mesophyll cells increased their starch stores. Tuber yield fell sharply (24–44%),…
Does short-term potassium fertilization improve recovery from drought stress in laurel?
2014
Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-fr…
Insights Into the Inside - A Quantitative Histological Study of the Explosively Moving Style in Marantaceae.
2018
This study aims to identify the histological basis for the extraordinary, fast movement of the style in Marantaceae. Although this explosive pollination mechanism was subject of many studies, quantitative measurements to document volumetric changes have never been conducted. Based on physical parameters and limitations (poroelastic time), the movement itself is by far too fast to be explained by turgor changes solely. Therefore, we address the hypothesis that the style contains elastic structures to store energy allowing the fast movement. We provide an experimental approach in Goeppertia bachemiana to identify histological differences of styles in various states, i.e., steady, unreleased, …