Search results for "two-phase"
showing 10 items of 98 documents
Corrigendum: Generalized Buckley–Leverett theory for two-phase flow in porous media
2012
Generalized Buckley–Leverett theory for two-phase flow in porous media
2011
Hysteresis and fluid entrapment pose unresolved problems for the theory of flow in porous media. A generalized macroscopic mixture theory for immiscible two-phase displacement in porous media (Hilfer 2006b Phys. Rev. E 73 016307) has introduced percolating and nonpercolating phases. It is studied here in an analytically tractable hyperbolic limit. In this limit a fractional flow formulation exists, that resembles the traditional theory. The Riemann problem is solved analytically in one dimension by the method of characteristics. Initial and boundary value problems exhibit shocks and rarefaction waves similar to the traditional Buckley-Leverett theory. However, contrary to the traditional th…
A comparison between simulation and experiment for hysteretic phenomena during two-phase immiscible displacement
2014
[1] The paper compares a theory for immiscible displacement based on distinguishing percolating and nonpercolating fluid parts with experimental observations from multistep outflow experiments. The theory was published in 2006 in Physica A, volume 371, pages 209–225; the experiments were published in 1991 in Water Resources Research, volume 27, pages 2113. The present paper focuses on hysteretic phenomena resulting from repeated cycling between drainage and imbibition processes in multistep pressure experiments. Taking into account, the hydraulic differences between percolating and nonpercolating fluid parts provides a physical basis to predict quantitatively the hysteretic phenomena observ…
Dimensional analysis of pore scale and field scale immiscible displacement
1996
A basic re-examination of the traditional dimensional analysis of microscopic and macroscopic multiphase flow equations in porous media is presented. We introduce a ‘macroscopic capillary number’\(\overline {Ca}\) which differs from the usual microscopic capillary number Ca in that it depends on length scale, type of porous medium and saturation history. The macroscopic capillary number\(\overline {Ca}\) is defined as the ratio between the macroscopic viscous pressure drop and the macroscopic capillary pressure.\(\overline {Ca}\) can be related to the microscopic capillary number Ca and the LeverettJ-function. Previous dimensional analyses contain a tacit assumption which amounts to setting…
A new method in investigations of bubble cluster shapes in two-phase flow
1991
Abstract In this paper a new probabilistic method is used to analyse the distribution of air bubbles in two-phase flow. So far, the method has been applied in astronomy and cosmology to investigate the distribution of galaxies. The basic idea is presented and the method applied to the photographed population of air bubbles in a liquid. The method allows the homogeneity of the flow to be evaluated qualitatively and quantitatively.
Application of the image processing methods for analysis of two-phase flow in turbomachinery
2007
The aim of this research is an application of digital image analysis for working out the method, which will allow to evaluate irregularity rate of two-phase flow across various geometry of tube bundle in aspect of the shell - and - tube heat exchanger optimization. Visualization of liquid flow in the shell — side enables an analysis of flow parameters by the use of image processing and analysis methods.
Adjoint-based inversion for porosity in shallow reservoirs using pseudo-transient solvers for non-linear hydro-mechanical processes
2020
Abstract Porous flow is of major importance in the shallow subsurface, since it directly impacts on reservoir-scale processes such as waste fluid sequestration or oil and gas exploration. Coupled and non-linear hydro-mechanical processes describe the motion of a low-viscous fluid interacting with a higher viscous porous rock matrix. This two-phase flow may trigger the initiation of solitary waves of porosity, further developing into vertical high-porosity pipes or chimneys. These preferred fluid escape features may lead to localised and fast vertical flow pathways potentially problematic in the case of for instance CO2 sequestration. Constraining the porosity and the non-linearly related pe…
Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process
2015
Abstract The electro-generation of H 2 O 2 and the abatement of the model organic pollutant Acid Orange 7 (AO7) in water by an electro-Fenton process were performed under moderate air pressures (up to 11 bar) for the first time to our knowledge. An increase of the pressure gave rise to a drastic enhancement of the concentration of hydrogen peroxide. In systems pressurized with air at 11 bar, the electro reduction of oxygen at a graphite cathode gave rise to a concentration of H 2 O 2 of about 12 mM, about one order of magnitude higher than that achieved at atmospheric pressure. This result is attributed to the mass transfer intensification induced by the higher local concentration of molecu…
(Liquid + liquid) equilibria of polymer-salt aqueous two-phase systems for laccase partitioning : UCON 50-HB-5100 with potassium citrate and (sodium …
2012
Aqueous two-phase systems (ATPS) are recognized as very suitable techniques for the recovery of target solutes in biological applications. Three new phase diagrams of (UCON 50-HB-5100 + potassium citrate + water), (UCON 50-HB-5100 + sodium formate + water), and (UCON 50-HB-5100 + potassium formate + water) systems were measured at 23 C. The binodal curves were successfully described using the empirical equation suggested by Merchuk and co-workers. The reliability of the tie-line data experimentally determined was evaluated using the equations reported by Othmer–Tobias and Bancroft and satisfactory linearity was obtained for all ATPS. Among the salts studied, potassium citrate proved to be t…