Search results for "ultrafilter"

showing 3 items of 3 documents

Forcing for First-Order Languages from the Perspective of Rasiowa–Sikorski Lemma

2017

The paper is concerned with the problem of building models for first-order languages from the perspective of the classic paper of Rasiowa and Sikorski [9]. The central idea, developed in this paper, consists in constructing first-order models from individual variables. The key notion of a Rasiowa–Sikorski set of formulas for an arbitrary countable language L is examined. Each Rasiowa–Sikorski set defines a countable model for L . Conversely, every countable model for L is determined by a Rasiowa–Sikorski set. The focus is on constructing Rasiowa–Sikorski sets by applying forcing techniques restricted to Boolean algebras arising from the subsets of the set of atomic formulas of L .

Algebra and Number TheoryForcing (recursion theory)Lindenbaum setUltrafilterFirst orderBoolean algebraTheoretical Computer ScienceFirst-order logicBoolean algebraRasiowa–Sikorski setAlgebrasymbols.namesakePerspective (geometry)substitutional semanticsComputational Theory and MathematicsforcingRasiowa–Sikorski lemmasymbolsultrafilterInformation SystemsMathematicsfirst-order logicFundamenta Informaticae
researchProduct

On product of p-sequential spaces

2016

Abstract The product of finitely many regular p-compact p-sequential spaces is p-compact p-sequential for any free ultrafilter p as it follows from [5] . In the paper is produced an example of a Hausdorff p-compact p-sequential space whose square is not p-sequential. It is also given an example of a space which is sP-radial, wP-radial, vwP-radial for any P ⊂ μ ( τ ) but its square is neither sP-radial nor wP-radial nor vwP-radial space.

Discrete mathematicsInner product spaceProduct (mathematics)UltrafilterHausdorff spaceRegular spaceAstrophysics::Earth and Planetary AstrophysicsGeometry and TopologyUrysohn and completely Hausdorff spacesSpace (mathematics)Normal spaceMathematicsTopology and its Applications
researchProduct

AC is Equivalent to the Coherence Principle. Corrigendum to my Paper "Induction Principles for Sets"

2009

Theorem 3.7 of [1] is corrected. Two coherence principles and the ultrafilter property for partial functions contained in a relation are formulated. The equivalence of the coherent principles with AC and the equivalence of the ultrafilter property with BPI is shown.

Mathematics::LogicAlgebra and Number TheoryComputational Theory and MathematicsPartial functionUltrafilterMathematical analysisMathematics::General TopologyAstrophysics::Cosmology and Extragalactic AstrophysicsEquivalence (formal languages)Information SystemsTheoretical Computer ScienceMathematicsFundamenta Informaticae
researchProduct