Search results for "umidi"
showing 10 items of 324 documents
The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model
2011
Our 2-D dynamic model including spectral microphysics and scavenging has been evaluated for a warm precipitating convective cloud at Day 261 (18 September 1974) of the GATE campaign. Two different chemical species ((NH 4 ) 2 SO 4 and NaCl) of aerosol particles were followed in the air, inside the drops in the cloud, and inside the drops reaching the ground. Concerning the dynamics and microphysics, as well as the scavenging and wet deposition, the model results agree quite well with available observations. The cloud rained after 19 min of cloud life time. For the considered aerosol loading of the atmosphere, rough estimates are derived for the total material processed by such a warm convect…
Fluorescent biological aerosol particle measurements at a tropical high-altitude site in southern India during the southwest monsoon season
2016
An ultraviolet aerodynamic particle sizer (UV-APS) was continuously operated for the first time during two seasons to sample the contrasting winds during monsoon and winter to characterize the properties of fluorescent biological aerosol particles (FBAPs), at a high-altitude site in India. Averaged over the entire monsoon campaign (1 June–21 August 2014), the arithmetic mean number and mass concentrations of coarse-mode (> 1 µm) FBAPs were 0.02 cm−3 and 0.24 µg m−3, respectively, which corresponded to ∼ 2 and 6 % of total aerosol loading, respectively. Average FBAP number size distribution exhibited a peak at ∼ 3 µm, which is attributed to the fungal spores, as supported by scanning …
Assessments for the impact of mineral dust on the meningitis incidence in West Africa.
2013
9 pages; International audience; Recently, mineral dust has been suspected to be one of the important environmental risk factor for meningitis epidemics in West Africa. The current study is one of the first which relies on long-term robust aerosol measurements in the Sahel region to investigate the possible impact of mineral dust on meningitis cases (incidence). Sunphotometer measurements, which allow to derive aerosol and humidity parameters, i.e., aerosol optical thickness, Angström coefficient, and precipitable water, are combined with quantitative epidemiological data in Niger and Mali over the 2004-2009 AMMA (African Monsoon Multidisciplinary Analysis) program period. We analyse how th…
2012
Abstract. One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA…
Contrast in column-integrated aerosol optical properties during heating and non-heating seasons at Urumqi — Its causes and implications
2017
Abstract Aerosol optical properties were retrieved from two years' worth of Sunphotometer measurements at Urumqi, an urban station in western China. Distinct seasonal variations of aerosol optical properties were revealed. During the heating season, mean aerosol optical depth at 550 nm (τ a ), Angstrom exponent calculated from aerosol optical depth at wavelength of 440 and 870 nm (α) as well as PM 2.5 concentration were 0.58 ± 0.33, 1.11 ± 0.34 and 79.5 ± 69.6 μg m − 3 , respectively, which contrasted their counterparts during the non-heating season of 0.32 ± 0.22, 0.79 ± 0.26, and 35.0 ± 20.1 μg m − 3 . Seasonal variations of τ a and PM 2.5 at Urumqi contrasted with corresponding values in…
Aerosol influence on radiative cooling
2011
Aerosol particles have a complex index of refraction and therefore contribute to atmospheric emission and radiative cooling rates. In this paper calculations of the longwave flux divergence within the atmosphere at different heights are presented including water vapour and aerosol particles as emitters and absorbers. The spectral region covered is 5 to 100 microns divided into 23 spectral intervals. The relevant properties of the aerosol particles, the single scattering albedo and the extinction coefficient, were first calculated by Mie-theory and later by an approximation formula with a complex index of refraction given by Volz. The particle growth with relative humidity is also incorporat…
Consistency between GRUAN sondes, LBLRTM and IASI
2017
Abstract. Radiosonde soundings from the GCOS Reference Upper-Air Network (GRUAN) data record are shown to be consistent with Infrared Atmospheric Sounding Instrument (IASI)-measured radiances via LBLRTM (Line-By-Line Radiative Transfer Model) in the part of the spectrum that is mostly affected by water vapour absorption in the upper troposphere (from 700 hPa up). This result is key for climate data records, since GRUAN, IASI and LBLRTM constitute reference measurements or a reference radiative transfer model in each of their fields. This is specially the case for night-time radiosonde measurements. Although the sample size is small (16 cases), daytime GRUAN radiosonde measurements seem to h…
Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean
2008
[1] With the help of a Lagrangian moisture source diagnostic, linkages between stable isotope measurements in water vapor in Rehovot (Israel), with typical sampling times of 8 hours, and the meteorological conditions in the evaporation regions are established. These linkages can be formulated in quantitative terms, and are also quantitatively comparable with other data from isotope measurements over the ocean and with simple theoretical calculations. On the one hand, a strong negative correlation (r = −0.82) between relative humidity with respect to sea surface temperature in the source regions and measured deuterium excess (d) is found, corroborating results from isotope global circulation…
Survival of Snow in the Melting Layer: Relative Humidity Influence
2021
AbstractThis study quantifies how far snow can fall into the melting layer (ML) before all snow has melted by examining a combination of in-situ observations from aircraft measurements in Lagrangian spiral descents from above through the ML and descents and ascents into the ML, as well as an extensive database of NOAA surface observer reports during the past 50 years. The airborne data contain information on the particle phase (solid, mixed, or liquid), population size distributions and shapes, along with temperature, relative humidity, and vertical velocity. A wide range of temperatures and ambient relative humidities are used for both the airborne and ground-based data. It is shown that a…
Exploring the linkage between dew point temperature and precipitation extremes: A multi-time-scale analysis on a semi-arid Mediterranean region
2021
Abstract Understanding warming climate implications on precipitation is of crucial importance, especially for areas particularly subjected to climate changes and land use/cover modifications, which could be extremely vulnerable to phenomena typically caused by rainfall extremes, such as floods and landslides. Past decade has been witnessing an increasing interest on simple modeling approaches based on the observation of commonly available meteorological variables and their physical linkages. In particular, based on the well-known thermodynamic Clausius-Clapeyron (CC) equation, it was widely investigated the scaling relation between rainfall extremes and variables representative of the near …