Search results for "uniqueness"
showing 10 items of 211 documents
Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations
2012
In this paper, we establish certain fixed point theorems in metric spaces with a partial ordering. Presented theorems extend and generalize several existing results in the literature. As application, we use the fixed point theorems obtained in this paper to study existence and uniqueness of solutions for fourth-order two-point boundary value problems for elastic beam equations.
Porous medium equation with absorption and a nonlinear boundary condition
2002
where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…
Coincidence problems for generalized contractions
2014
In this paper, we establish some new existence, uniqueness and Ulam-Hyers stability theorems for coincidence problems for two single-valued mappings. The main results of this paper extend the results presented in O. Mle?ni?e: Existence and Ulam-Hyers stability results for coincidence problems, J. Non-linear Sci. Appl., 6(2013), 108-116. In the last section two examples of application of these results are also given.
ANALYSIS OF A SPHERICAL HARMONICS EXPANSION MODEL OF PLASMA PHYSICS
2004
A spherical harmonics expansion model arising in plasma and semiconductor physics is analyzed. The model describes the distribution of particles in the position-energy space subject to a (given) electric potential and consists of a parabolic degenerate equation. The existence and uniqueness of global-in-time solutions is shown by semigroup theory if the particles are moving in a one-dimensional interval with Dirichlet boundary conditions. The degeneracy allows to show that there is no transport of particles across the boundary corresponding to zero energy. Furthermore, under certain conditions on the potential, it is proved that the solution converges in the long-time limit exponentially f…
Nonlocal elasticity and related variational principles
2001
Abstract The Eringen model of nonlocal elasticity is considered and its implications in solid mechanics studied. The model is refined by assuming an attenuation function depending on the `geodetical distance' between material particles, such that in the diffusion processes of the nonlocality effects certain obstacles as holes or cracks existing in the domain can be circumvented. A suitable thermodynamic framework with nonlocality is also envisaged as a firm basis of the model. The nonlocal elasticity boundary-value problem for infinitesimal displacements and quasi-static loads is addressed and the conditions for the solution uniqueness are established. Three variational principles, nonlocal…
The Calderón problem for the fractional Schrödinger equation
2020
We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.
Multiplicity results for asymptotically linear equations, using the rotation number approach
2007
By using a topological approach and the relation between rotation numbers and weighted eigenvalues, we give some multiplicity results for the boundary value problem u′′ + f(t, u) = 0, u(0) = u(T) = 0, under suitable assumptions on f(t, x)/x at zero and infinity. Solutions are characterized by their nodal properties.
A bending theory of thermoelastic diffusion plates based on Green-Naghdi theory
2017
Abstract This article is concerned with bending plate theory for thermoelastic diffusion materials under Green-Naghdi theory. First, we present the basic equations which characterize the bending of thin thermoelastic diffusion plates for type II and III models. The theory allows for the effect of transverse shear deformation without any shear correction factor, and permits the propagation of waves at a finite speed without energy dissipation for type II model and with energy dissipation for type III model. By the semigroup theory of linear operators, we prove the well-posedness of the both models and the asymptotic behavior of the solutions of type III model. For unbounded plate of type III…
Uniqueness of diffusion on domains with rough boundaries
2016
Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…
Two -methods to generate Bézier surfaces from the boundary
2009
Two methods to generate tensor-product Bezier surface patches from their boundary curves and with tangent conditions along them are presented. The first one is based on the tetraharmonic equation: we show the existence and uniqueness of the solution of @D^4x->=0 with prescribed boundary and adjacent to the boundary control points of a nxn Bezier surface. The second one is based on the nonhomogeneous biharmonic equation @D^2x->=p, where p could be understood as a vectorial load adapted to the C^1-boundary conditions.