Search results for "uranium"
showing 10 items of 260 documents
A Mononuclear Uranium(IV) Single-Molecule Magnet with an Azobenzene Radical Ligand
2015
A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2NPh)3‐tacn}UIV(η2‐N2Ph2.)] (2), was obtained by one‐electron reduction of azobenzene by the trivalent uranium compound [UIII{(SiMe2NPh)3‐tacn}] (1). Compound 2 was characterized by single‐crystal X‐ray diffraction and 1H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single‐molecule magnet behaviour for the first time in a mononuclear UIV compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approxim…
Contribution of the synchrotron diffraction study of the oxidation of uranium dioxide at 250○C
2004
The structural evolution of UO 2 during its oxidation into U 3 O 8 at 250°C in air was studied by in-situ synchrotron X-ray diffraction on the D2AM-CRG beamline at ESRF. The aim of this study is to determine the phases which are likely to appear during a long term storage of used nuclear fuel. Our results are in disagreement with the literature where the existence of the secondary cubic phase is not reported, and an α-U 3 O 7 tetragonal phase (c/a < 1) is also mentioned but definitely not observed. These previous interpretations are possibly due to a poor instrumental resolution, inducing a sensible broadening of the diffraction peaks. Particularly, the fact that the instrumental resolution…
Building future nuclear power fleets: The available uranium resources constraint
2013
Abstract According to almost all forward-looking studies, the world′s energy consumption will increase in the future decades, mostly because of the growing world population and the long-term development of emerging countries. The effort to contain global warming makes it hard to exclude nuclear energy from the global energy mix. The availability of natural uranium resources is a major constraint in terms of meeting this demand. In line with the scenarios floated by various international organisations and taking into consideration only current uranium-consuming light water reactors technologies with slow neutrons, 4 to 7 Mt of uranium could be consumed by 2050, namely, all identified or know…
New measurement of the 242Pu(n,γ) cross section at n_TOF
2016
The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2 ) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242 Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight captu…
Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditio…
2020
The interactions of epinephrine ((R)-(&minus
Comment on "Enthalpy of Uranium Adsorption onto Hematite".
2021
Modeling the properties of uranium-based single ion magnets
2013
We analyze the magnetic behavior of the five uranium-based SIMs reported in the literature. By combining a corrected crystal field model with the magnetic experimental data, we obtain the lowest-lying magnetic levels and the associated wave functions of the nanomagnets, which are found to be compatible with the observed SMM behavior. Additionally, this approach has allowed us to propose some geometrical considerations and practical advice for experimentalists aiming for the rational design of SIMs and spin qubits based on uranium.
Trennung von spaltprodukten durch Extraktionschromatographie
1970
The separation of fission products which form anionic species in mineral acids and of uranium and neptunium from samples of neutron-irradiated uranium is described. The method used is extraction chromatography with tri-n-butylphosphate (TBP) and di-(2-ethylhexyl)-orthophosphoric acid (HDEHP) as extractants and polytrifluoromonochloroethylene powder as the solid support. In the first column Zr, U and Np are extracted with TBP from 8N HNO3/NaClO3. In the second column, HDEHP is applied as extractant and 9N HCl/NaClO3 as the mobile phase for the isolation of Nb, Sb, and I, and in the third column (HDEHP), the rare earths and Mo are extracted from 0.1N HCl. Finally with the fourth column (TBP),…
Sedimentological and tectonic context of Paleoproterozoïque Franceville basin (Gabon) : fluid pressure structures, bitumen and uranium mineralization
2016
Metallogenic deposits within paleproterozoic basins depend on generation and migration of fluids. The aim of this study is to provide a better understanding of tectonic, sedimentological and diagenetic setting of the uranium deposits in the Franceville basin and to characterize hydraulic fracturing impact on fluid migration processes in sandstone reservoirs.Tectonic study define the N180-170° transfer faults, associated with Archean tectonic and the N110-120° longitudinal normal faults. These two fault directions split the Franceville basin into small sub-basins. The longitudinal normal faults are associated with footwall anticlines and hanging wall synclines. The uranium deposits of France…
A very short uranium-uranium bond: The predicted metastable U22+
2005
Quantum chemical calculations, based on multiconfigurational wave functions and including relativistic effects, show that the U(2)2+ system has a large number of low-lying electronic states with S of 0 to 2 and Lambda ranging from zero to ten. These states share a very small bond length of about 2.30 A, compared to 2.43 A in neutral U2. The Coulomb explosion to 2 U+ lowers the energy by only 1.6 eV and is separated by a broad barrier.