Search results for "vanadium"
showing 10 items of 260 documents
Ethylenebis(5-chlorosalicylideneiminato)vanadium dichloride immobilized on MgCl2 -based supports as a highly effective precursor for ethylene polymer…
2009
Ethylenebis(5-chlorosalicylideneiminato)vanadium dichloride supported on MgCl2(THF)2 or on the same carrier modified by EtnAlCl3−n, where n = 1–3, was used in ethylene polymerization in the presence of MAO or a common alkylaluminium compounds as a cocatalyst. The support type alter vanadium loading and also change the characteristic of the catalytic active sites. Et2AlCl is the best activator for a catalyst which has been immobilized on a nonmodified support, whereas the systems which contain a carrier which has been modified by an organoaluminium compound reveal the highest activity in conjunction with MAO. That difference, together with different temperature effects on polymerization effi…
A vanadyl Schiff base complex: {2,2'-[1,1'-(o-phenylenedinitrilo)bis(ethan-1-yl-1-ylidene)]diphenolato}oxovanadium(IV).
2011
The green crystals of the title compound, [V(C(22)H(18)N(2)O(2))O], represent a mononuclear oxovanadium complex. The central V(IV) centre has a distorted square-pyramidal coordination. Two N atoms and two O atoms of the Schiff base ligand define the base of the pyramid, and the oxide O atom is in the apical position. Density functional theory (DFT) calculations were performed to analyse the changes in the geometry of the ligand during the complex formation. The most significant changes are observed in the values of the torsion angles in the vicinity of the donor N atoms. The HOMA index (Harmonic Oscillator Model of Aromaticity) has been calculated to compare the aromaticity of the benzene r…
Bioinspired Mo, W and V complexes bearing a highly hydroxyl-functionalized Schiff base ligand
2020
Abstract A series of bioinspired dioxidomolybdenum( vi), dioxidotungsten (vi) and oxidovanadium (v) complexes [MoO2(H2LSaltris)], [WO2(H2LSaltris)] and [VO(HLSaltris)]2 were prepared by the reaction of a hydroxyl-rich Schiff base proligand N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-3,5-di-tert-butylsalicylaldimine (H4LSaltris) with metal precursors in methanol solutions. Molybdenum and tungsten complexes crystallize as mononuclear molecules, whereas the vanadium complex forms dinuclear units. From the complexes, [VO(HLSaltris)]2 shows activity in the oxidation of 4-tert-butylcatechol and 3,5-di-tert-butylcatechol, mimicking the action of the dicopper enzyme catechol oxidase.
Thermochromic Thin Films: Synthesis, Properties and Energy Consumption Modelling
2013
Thermochromic materials such as vanadium dioxide have been postulated for use in “SMART” windows for a number of years. Such windows work by exploiting a structural phase change from an infra-red transmissive state to a infra-red reflective state. Significant challenges still remain before such materials will be able to find wide spread use. In this mini review we discuss the nature of this thermochromic transition with reference to the latest research work in the field. We pay particular attention to challenges such as film colouration, transition temperature, and transition hysteresis. We describe the most up to date strategies for addressing these challenges, considering advanced synthes…
Vanadium dioxide and gold nanocomposite films for glazing application
2009
Vanadium dioxide is a material with great potential as an intelligent glazing material. The technology is based on a metal to semiconductor transition (MST) where there is an associated structural change from the higher temperature rutile structure to the lower temperature monoclinic structure. This structural transition results in significant changes in optical properties and electrical conductivity. Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised, to produce thin films of gold nano-particle vanadium dioxide nanocomposites. Good surface coverage is observed comparable to that of APCVD processes and a variety of different film thickn…
Vanadium dioxide and gold nanocomposite films for glazing applications
2009
Vanadium dioxide is a material with great potential as an intelligent glazing material. The technology is based on a metal to semiconductor transition (MST) where there is an associated structural change from the higher temperature rutile structure to the lower temperature monoclinic structure. This structural transition results in significant changes in optical properties and electrical conductivity. Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised, to produce thin films of gold nano-particle vanadium dioxide nanocomposites. Good surface coverage is observed comparable to that of APCVD processes and a variety of different film thickn…
Retention of vanadium (V) by three Finnish mineral soils
1994
Summary Retention of V(V) by three Finnish mineral soils from 10−4m and 10−5m sodium vanadate solutions was investigated at room temperature in the pH range 2.3–7.5. In adsorption experiments, 0.02 m KCl was used as ionic medium, and the samples were left to equilibrate for 72 h. The solid: solution ration was 1:100 (m: v). Maximum adsorption occurred at pH ∼4, where 70–80% of the added V (350–400 μg g−1 from 10−4m solution and 35–40 μg g−1 from 10−5m solution) was retained by each soil. Retention was significant even at pH 6, where adsorption of a similar anion, molybdate, is negligible. Desorption of the retained V was measured by adding 50.0 cm3 of 0.02 M KCl into weighed soil samples an…
CCDC 1855151: Experimental Crystal Structure Determination
2019
Related Article: Pasi Salonen, Anssi Peuronen, Jari Sinkkonen, Ari Lehtonen|2019|Inorg.Chim.Acta|489|108|doi:10.1016/j.ica.2019.02.011
CCDC 802522: Experimental Crystal Structure Determination
2011
Related Article: O.Wichmann, H.Sopo, A.Lehtonen, R.Sillanpaa|2011|Eur.J.Inorg.Chem.||1283|doi:10.1002/ejic.201001251
CCDC 735908: Experimental Crystal Structure Determination
2011
Related Article: M.Sutradhar, T.R.Barman, G.Mukherjee, M.G.B.Drew, S.Ghosh|2010|Inorg.Chim.Acta|363|3376|doi:10.1016/j.ica.2010.06.025