Search results for "vector fields"
showing 10 items of 17 documents
Abelian integrals and limit cycles
2006
Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.
Melnikov functions and Bautin ideal
2001
The computation of the number of limit cycles which appear in an analytic unfolding of planar vector fields is related to the decomposition of the displacement function of this unfolding in an ideal of functions in the parameter space, called the Ideal of Bautin. On the other hand, the asymptotic of the displacement function, for 1-parameter unfoldings of hamiltonian vector fields is given by Melnikov functions which are defined as the coefficients of Taylor expansion in the parameter. It is interesting to compare these two notions and to study if the general estimations of the number of limit cycles in terms of the Bautin ideal could be reduced to the computations of Melnikov functions for…
On singularities of discontinuous vector fields
2003
Abstract The subject of this paper concerns the classification of typical singularities of a class of discontinuous vector fields in 4D. The focus is on certain discontinuous systems having some symmetric properties.
Minimal unit vector fields
2002
We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.
Generic unfoldings with the same bifurcation diagram which are not (C0, C0)— equivalent
1997
Existence and uniqueness of solutions to superdifferential equations
1993
Abstract We state and prove the theorem of existence and uniqueness of solutions to ordinary superdifferential equations on supermanifolds. It is shown that any supervector field, X = X0 + X1, has a unique integral flow, Г: R 1¦1 x (M, AM) → (M, AM), satisfying a given initial condition. A necessary and sufficient condition for this integral flow to yield an R 1¦1-action is obtained: the homogeneous components, X0, and, X1, of the given field must define a Lie superalgebra of dimension (1, 1). The supergroup structure on R 1¦1, however, has to be specified: there are three non-isomorphic Lie supergroup structures on R 1¦1, all of which have addition as the group operation in the underlying …
Harnack estimates for degenerate parabolic equations modeled on the subelliptic $p-$Laplacian
2014
Abstract We establish a Harnack inequality for a class of quasi-linear PDE modeled on the prototype ∂ t u = − ∑ i = 1 m X i ⁎ ( | X u | p − 2 X i u ) where p ⩾ 2 , X = ( X 1 , … , X m ) is a system of Lipschitz vector fields defined on a smooth manifold M endowed with a Borel measure μ, and X i ⁎ denotes the adjoint of X i with respect to μ. Our estimates are derived assuming that (i) the control distance d generated by X induces the same topology on M ; (ii) a doubling condition for the μ-measure of d-metric balls; and (iii) the validity of a Poincare inequality involving X and μ. Our results extend the recent work in [16] , [36] , to a more general setting including the model cases of (1)…
Dynamical analysis of anisotropic inflation
2016
Inflaton coupling to a vector field via the $f^2(\phi)F_{\mu\nu}F^{\mu\nu}$ term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation and to circumvent the $\eta$-problem. Here, I perform dynamical analysis of such a system allowing for most general Bianchi I initial conditions. I also confirm the stability of attractor equilibrium points in phase-space directions that had not been investigated before.
Plane foliations with a saddle singularity
2012
Abstract We study the set of planar vector fields with a unique singularity of hyperbolic saddle type. We found conditions to assure that a such vector field is topologically equivalent to a linear saddle. Furthermore, we describe the plane foliations associated to these vector fields. Such a foliation can be split in two subfoliations. One without restriction and another one that is topologically characterized by means of trees.
The first Chevalley–Eilenberg Cohomology group of the Lie algebra on the transverse bundle of a decreasing family of foliations
2010
Abstract In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle V k to a decreasing family of k foliations F i on a manifold M . We have shown that there exists a ( 1 , 1 ) tensor J of V k such that J k ≠ 0 , J k + 1 = 0 and we defined by L J ( V k ) the Lie Algebra of vector fields X on V k such that, for each vector field Y on V k , [ X , J Y ] = J [ X , Y ] . In this note, we study the first Chevalley–Eilenberg Cohomology Group, i.e. the quotient space of derivations of L J ( V k ) by the subspace of inner derivations, denoted by H 1 ( L J ( V k ) ) .