Search results for "vesicle"
showing 10 items of 787 documents
Circular RNA in Exosomes
2018
Circular RNAs (circRNAs) are a novel family of non-coding endogenous RNAs discovered in all eukaryotic cells and generated through a particular mechanism of alternative splicing called “back-splicing”. These molecules show multiple functions, by acting as modulators of gene and miRNA expression, and may have a role in several biological processes, such as cell proliferation and invasion with, tumour development and progression, and in several mechanisms underlying other diseases. Their presence has been shown to be abundant in several body fluids such as blood and saliva. Based on their biogenesis mechanism, cir- cRNAs may be categorized into five classes: exonic circRNAs, intronic circRNAs…
A Model for ERD2 Function in Higher Plants
2020
ER lumenal proteins have a K(H)DEL motif at their C-terminus. This is recognized by the ERD2 receptor (KDEL receptor in animals), which localizes to the Golgi apparatus and serves to capture escaped ER lumenal proteins. ERD2-ligand complexes are then transported back to the ER via COPI coated vesicles. The neutral pH of the ER causes the ligands to dissociate with the receptor being returned to the Golgi. According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, although it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult t…
Loss of
2020
The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/β/β'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the β-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the…
ß-COP mutants show specific high sensitivity to chloride ions.
2021
Coat Protein I (COPI) consists of a complex (coatomer) formed by seven subunits (α-, β-, β’-, γ-, δ-, ε-, and ζ-COP) that is recruited to Golgi membranes to form vesicles that shuttle from the Golgi apparatus to the ER and between Golgi stacks. Recently, it has been described that loss of function mutants of the two Arabidopsis β-COP genes, β1-COP and β2-COP, showed increased sensitivity to salt stress (NaCl). Using a mixture of either Na(+) or Cl(−) salts, we have now found that β-COP mutants are specifically and highly sensitive to chloride ions.
The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion.
2017
IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contra…
Differential Effect of Plant Lipids on Membrane Organization
2015
SPE IPM; International audience; The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger…
p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants
2020
p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the…
Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages
2019
Abstract In the present work, red grape seed and stalk extracts were incorporated in vesicular systems designed for topical application. The phytocomplexes were obtained by maceration of biomasses in ethanol and subsequent lyophilisation. Seed extract was rich in catechin, epicatechin, epicatechin gallate, while gallic acid, epigallocatechin gallate, quercetin, quercetin 3-glucoside and malvidin-3-glucoside were detected in higher amounts in the stalk extract. Both extracts were incorporated in liposomes, hyalurosomes and transfersomes. In addition, hyalo-transfersomes were developed for the first time in this work, by combining the main modifiers of hyalurosomes and transfersomes (i.e., so…
Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles
1988
The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H(+)-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H(+)-ATPase. C. beticola toxin markedly inhibited ATP dependent H(+)-transport, and this e…
Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes
1999
Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterolcontaining phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, u…