Search results for "vibration"
showing 10 items of 823 documents
A FEM piezoelectric beam model for damping circuit analysis
2013
A finite element, developed for straight generally layered smart beam, is used to investigate vibration damping capability of circuit elements. First, the electric state is analytically condensed to kinematical quantities and the mechanical model is then written for shear deformable Timoshenko’s beam including the effects of electro-elastic couplings stacking sequence. The contributions of the external electric loads on both the equivalent stiffness properties and the equivalent mechanical boundary conditions are also taken into account. The finite element is formulated by using Hermite shape functions, which depend on parameters representative of the staking sequence through the equivalent…
Infrared Difference Spectroscopy of Proteins: From Bands to Bonds
2020
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functional…
Theoretical calculation of the vibrational spectra of cis-cis-cyclooctadienes in the vapour phase.
2000
The theoretical infrared spectra of 1,3-cis-cis-cyclooctadiene (1,3-COD) and 1,5-cis-cis-cyclooctadiene (1,5-COD), were obtained by ab initio MO calculations at Hartree-Fock level. The results were compared with the available IR experimental spectra of 1,3- and 1,5-COD. The apparent agreement between theoretical and experimental data allows us to exploit two bands, found only in the case of the theoretical spectrum of 1,4-COD, as a tool for identifying 1,4-COD during its synthesis.
Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices
2015
Abstract The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be +8.0 kJ mol −1 higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex str…
"Expanded" local mode approach and isotopic effect in polyatomic molecules
2014
In this thesis, on the base of the "expanded", local mode approach and general isotopic substitution theory we obtain sets of simple analytical relations between spectroscopic parameters (harmonic frequencies, anharmonic coefficients, ro-vibrational parameters, different kinds of Fermi and Coriolis-type interaction parameters) of the CH2D2, CH3D and CHD3 molecules. All of them are expressed as simple functions of spectroscopic parameters of the mother CH4 molecule. Test calculations with the isotopic relations show that even without including prior informations about the isotopic species, numerical results of calculations are in a good agreement both with experimental data and results of ab…
STUDY OF THE INTERNAL DYNAMICS OF NON PLANAR PYRAMIDAL MOLECULES IN VIBRATIONALY VERY EXCITED STATES.
2007
From the U (p+1) formalism, we built a Hamiltonian adapted to the stretching modes of nonplanar XY3 molecules having the C3v group of geometrical invariance. This Hamiltonian is then coupled with two possible Hamiltonians describing the bending modes of these molecular system: a) based on the U (p+1) approach, a bending Hamiltonian is developed and the interaction between the bending and the stretching modes is taking into account through adapted 2:1 resonance coupling operator defined as a Us(4) x Ub(4) enveloping algebra operator ; b) based on the standard normal modes formalism, a bending modes Hamiltonian is expanded and the 2:1 interaction is taken into account as a tensorial product o…
Habilitation Thesis
2004
This habilitation thesis presents a synthesis of my research activities during the last eight years. I have distinguished, one the one hand, researches concerning rovibrational spectroscopy in a singlet electronic state (Part III) and, on the other hand, those concerning rovibronic spectroscopy in a degenerate electronic state (Part IV).
Algebraic study of pyramidal molecules in the very excited vibrational states.
2005
In the frame of the algebraic formalism U(p+1), we developed the method to build a vibrational Hamiltonian corresponding to a set of three identical oscillators. In order to test the model, we apply it to the molecules of stibine and arsine. We introduce a supplementary intermediate group K(3) inspired by the similar formalism used in nuclear physics. This group K(3) gives additional labels for classification of the energy levels. The eigenvalues of these invariant operators distinguish the local states of the molecule. Then we study the coupling of the vibrational modes of stretching and bending for the non plane XY3 molecules. We present the construction of an algebraic operator of coupli…
Raman spectroscopy of the high- and low-spin states of the spin crossover complex Fe(phen)2(NCS)2: an initial approach to estimation of vibrational c…
2000
Abstract Raman spectra of the spin-crossover complex Fe(phen)2(NCS)2 in the solid state have been recorded at 785 nm as a function of temperature to investigate the contribution of intramolecular vibrations to the entropy change, ΔS, associated with spin crossover. The modes of major interest for estimating the contribution lie in the range 100–500 cm−1, where the largest qualitative changes with temperature in the Raman spectra were observed. Analysis of these data, with the working assumption of an average frequency in this range as representative of the 15 distortion modes of an idealised FeN6 octahedron, leads to the conclusion that the intramolecular vibrations represent a primary cont…
Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets.
2017
To design molecular spin qubits and nanomagnets operating at high temperatures, there is an urgent need to understand the relationship between vibrations and spin relaxation processes. Herein we develop a simple first-principles methodology to determine the modulation that vibrations exert on spin energy levels. This methodology is applied to [Cu(mnt)2]2– (mnt2– = 1,2-dicyanoethylene-1,2-dithiolate), a highly coherent complex. By theoretically identifying the most relevant vibrational modes, we are able to offer general strategies to chemically design more resilient magnetic molecules, where the energy of the spin states is not coupled to vibrations.