Search results for "video processing"

showing 10 items of 56 documents

Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI using Deep Convolutional Networks

2020

In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognitioncardiovascular systemFOS: Electrical engineering electronic engineering information engineeringcardiovascular diseasesElectrical Engineering and Systems Science - Image and Video Processing
researchProduct

On the Reliability of the PNU for Source Camera Identification Tasks

2020

The PNU is an essential and reliable tool to perform SCI and, during the years, became a standard de-facto for this task in the forensic field. In this paper, we show that, although strategies exist that aim to cancel, modify, replace the PNU traces in a digital camera image, it is still possible, through our experimental method, to find residual traces of the noise produced by the sensor used to shoot the photo. Furthermore, we show that is possible to inject the PNU of a different camera in a target image and trace it back to the source camera, but only under the condition that the new camera is of the same model of the original one used to take the target image. Both cameras must fall wi…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern RecognitionElectrical Engineering and Systems Science - Image and Video Processing
researchProduct

Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy

2019

Deep learning has shown unprecedented success in a variety of applications, such as computer vision and medical image analysis. However, there is still potential to improve segmentation in multimodal images by embedding prior knowledge via learning-based shape modeling and registration to learn the modality invariant anatomical structure of organs. For example, in radiotherapy automatic prostate segmentation is essential in prostate cancer diagnosis, therapy, and post-therapy assessment from T2-weighted MR or CT images. In this paper, we present a fully automatic deep generative model-driven multimodal prostate segmentation method using convolutional neural network (DGMNet). The novelty of …

FOS: Computer and information sciencesComputer scienceComputer Vision and Pattern Recognition (cs.CV)medicine.medical_treatmentProstate segmentationFeature extractionComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONConvolutional neural network[SDV.IB.MN]Life Sciences [q-bio]/Bioengineering/Nuclear medicineConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringmedicineSegmentationArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)NoveltyDeep learningPattern recognitionElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseTransfer learning3. Good healthRadiation therapyGenerative model030220 oncology & carcinogenesisEmbeddingArtificial intelligencebusinessCTMRI
researchProduct

A Bayesian Multilevel Random-Effects Model for Estimating Noise in Image Sensors

2020

Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parame…

FOS: Computer and information sciencesMean squared errorC.4Computer scienceBayesian probabilityG.3ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONInference02 engineering and technologyBayesian inferenceStatistics - Applications0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical and Electronic EngineeringImage sensorI.4.1C.4; G.3; I.4.1Pixelbusiness.industryImage and Video Processing (eess.IV)020206 networking & telecommunicationsPattern recognitionStatistical modelElectrical Engineering and Systems Science - Image and Video ProcessingRandom effects modelNoise62P30 62P35 62F15 62J05Signal Processing020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftware
researchProduct

Extending the Unmixing methods to Multispectral Images

2021

In the past few decades, there has been intensive research concerning the Unmixing of hyperspectral images. Some methods such as NMF, VCA, and N-FINDR have become standards since they show robustness in dealing with the unmixing of hyperspectral images. However, the research concerning the unmixing of multispectral images is relatively scarce. Thus, we extend some unmixing methods to the multispectral images. In this paper, we have created two simulated multispectral datasets from two hyperspectral datasets whose ground truths are given. Then we apply the unmixing methods (VCA, NMF, N-FINDR) to these two datasets. By comparing and analyzing the results, we have been able to demonstrate some…

FOS: Computer and information sciencesMultispectral Imagesbusiness.industryComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageImage and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionHyperspectral imagingPattern recognitionUnmixingElectrical Engineering and Systems Science - Image and Video ProcessingField (computer science)Non-negative matrix factorizationRobustness (computer science)FOS: Electrical engineering electronic engineering information engineeringArtificial intelligencebusiness
researchProduct

Comparative survey of visual object classifiers

2018

Classification of Visual Object Classes represents one of the most elaborated areas of interest in Computer Vision. It is always challenging to get one specific detector, descriptor or classifier that provides the expected object classification result. Consequently, it critical to compare the different detection, descriptor and classifier methods available and chose a single or combination of two or three to get an optimal result. In this paper, we have presented a comparative survey of different feature descriptors and classifiers. From feature descriptors, SIFT (Sparse & Dense) and HeuSIFT combination colour descriptors; From classification techniques, Support Vector Classifier, K-Nea…

FOS: Computer and information sciences[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]ComputingMethodologies_PATTERNRECOGNITIONComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern Recognition[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Electrical Engineering and Systems Science - Image and Video Processing
researchProduct

Smart camera design for intensive embedded computing

2005

Computer-assisted vision plays an important role in our society, in various fields such as personal and goods safety, industrial production, telecommunications, robotics, etc. However, technical developments are still rare and slowed down by various factors linked to sensor cost, lack of system flexibility, difficulty of rapidly developing complex and robust applications, and lack of interaction among these systems themselves, or with their environment. This paper describes our proposal for a smart camera with real-time video processing capabilities. A CMOS sensor, processor and, reconfigurable unit associated in the same chip will allow scalability, flexibility, and high performance.

Flexibility (engineering)CMOS sensorbusiness.industryComputer scienceIndustrial productionRoboticsVideo processingEmbedded systemSignal ProcessingScalabilityComputer Vision and Pattern RecognitionSmart cameraArtificial intelligenceElectrical and Electronic EngineeringImage sensorbusinessReal-Time Imaging
researchProduct

COVID-19: A Survey on Public Medical Imaging Data Resources

2020

This regularly updated survey provides an overview of public resources that offer medical images and metadata of COVID-19 cases. The purpose of this survey is to simplify the access to open COVID-19 image data resources for all scientists currently working on the coronavirus crisis.

Image and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video Processing
researchProduct

Scalable Virtual Network Video-Optimizer for Adaptive Real-Time Video Transmission in 5G Networks

2020

The increasing popularity of video applications and ever-growing high-quality video transmissions (e.g., 4K resolutions), has encouraged other sectors to explore the growth of opportunities. In the case of health sector, mobile Health services are becoming increasingly relevant in real-time emergency video communication scenarios where a remote medical experts’ support is paramount to a successful and early disease diagnosis. To minimize the negative effects that could affect critical services in a heavily loaded network, it is essential for 5G video providers to deploy highly scalable and priorizable in-network video optimization schemes to meet the expectations of a large quantity of vide…

MultitenancyComputer Networks and CommunicationsComputer sciencebusiness.industryQuality of serviceTestbed020206 networking & telecommunications02 engineering and technologyVideo processingVideo optimizationScalability0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringbusinessVirtual network5GComputer networkIEEE Transactions on Network and Service Management
researchProduct

Dynamic neutron imaging of argon bubble flow in liquid gallium in external magnetic field

2020

This paper presents detailed results of neutron imaging of argon bubble flows in a rectangular liquid gallium vessel with and without the application of external horizontal magnetic field. The developed image processing algorithm is presented and its capability to extract physical information from images of low signal-to-noise ratio is demonstrated. Bubble parameters, velocity components, trajectories and relevant statistics were computed and analysed. A simpler version of the code was applied to the output of computational fluid dynamics simulations that reproduced the experiment. This work serves to further validate the neutron radiography as a suitable method for monitoring gas bubble fl…

Physics::Fluid DynamicsImage and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video Processing
researchProduct