Search results for "vortice"

showing 10 items of 55 documents

Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media

2009

[EN] We determine the functional behavior near the discrete rotational symmetry axis of discrete vortices of the nonlinear Schrodinger equation. We show that these solutions present a central phase singularity whose charge is restricted by symmetry arguments. Consequently, we demonstrate that the existence of high-charged discrete vortices is related to the presence of other off-axis phase singularities, whose positions and charges are also restricted by symmetry arguments. To illustrate our theoretical results, we offer two numerical examples of high-charged discrete vortices in photonic crystal fibers showing hexagonal discrete rotational invariance

PhysicsSingularity theoryRotational symmetryDiscrete symmetriesFOS: Physical sciencesCharge (physics)Pattern Formation and Solitons (nlin.PS)VorticesGlobal symmetryNonlinear Sciences - Pattern Formation and SolitonsSolitonsTopologyAtomic and Molecular Physics and OpticsSymmetry (physics)Schrodinger equationClassical mechanicsQuantum mechanicsMATEMATICA APLICADAPhotonic Crystal FibersTopological quantum numberSymmetry numberDiscrete symmetry
researchProduct

Vortex shape in unbaffled stirred vessels: experimental study via digital image analysis

2011

There is a growing interest in using unbaffled stirred tanks for addressing certain processing needs. In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is used to investigate the shape of the free-surface vortex that forms in uncovered unbaffled stirred tanks. The technique is based on back-lighting the vessel and suitably averaging vortex shape over time. Impeller clearance from vessel bottom and tank filling level are varied to investigate their influence on vortex shape. A correlation is finally proposed to fully describe vortex shape also when the vortex encompasses the impeller.

lcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicidigital image analysilcsh:TP155-156bioreactorslcsh:TK7885-7895surface vortexComputingMethodologies_DOCUMENTANDTEXTPROCESSINGunbuffled stirred vesselUNBAFFLED STIRRED VESSELSlcsh:Chemical engineeringunbuffled stirred vessels; surface vortex; bioreactorsFree-surface vorticeComputingMilieux_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Phenomenological description of the vortex density in rotating BEC superfluids

2008

The close analogy of a purely magnetic excitation scheme, used in the experiments on Bose-Einstein condensate by Hodby et al., and the rotating bucket experiments with liquid helium 4 has suggested us to apply a phenomenological equation for the vortex line density, previously proposed for rotating superfluid helium 4, to describe the vortex density in a rotating Bose-Einstein condensate as a function of the angular speed. In both systems, the phenomenological equation provides a reasonable description of the observed data.

vorticessuperfluid turbulencerotating Bose-Einstein condensate
researchProduct

Non-equilibrium temperature of well-developed quantum turbulence

2009

Abstract A non-equilibrium effective temperature of quantum vortex tangles is defined as the average energy of closed vortex loops. The resulting thermodynamic expressions for the entropy and the energy in terms of the temperature of the tangle are confirmed by a microscopic analysis based on a potential distribution function for the length of vortex loops. Furthermore, these expressions for the entropy and energy in terms of temperature are analogous to those of black holes: this may be of interest for establishing further connections between topological defects in superfluids and cosmology.

Physicsfractal dimensionnon equilibrium thermodynamicThermodynamic equilibriumQuantum vortexQuantum turbulenceGeneral Physics and AstronomyNon-equilibrium thermodynamicssuperfluid turbulenceVortexTopological defectSuperfluidityDistribution functionClassical mechanicsQuantum mechanicsSettore MAT/07 - Fisica Matematicavortice
researchProduct

Vortices in quantum droplets: Analogies between boson and fermion systems

2010

The main theme of this review is the many-body physics of vortices in quantum droplets of bosons or fermions, in the limit of small particle numbers. Systems of interest include cold atoms in traps as well as electrons confined in quantum dots. When set to rotate, these in principle very different quantum systems show remarkable analogies. The topics reviewed include the structure of the finite rotating many-body state, universality of vortex formation and localization of vortices in both bosonic and fermionic systems, and the emergence of particle-vortex composites in the quantum Hall regime. An overview of the computational many-body techniques sets focus on the configuration interaction …

PhysicsCondensed Matter::Quantum Gasesta214Condensed Matter - Mesoscale and Nanoscale Physicsta114quantum dropletsta221vorticesGeneral Physics and AstronomyFOS: Physical sciencesFermionQuantum Hall effectVortexMany-body problemQuantum dotQuantum Gases (cond-mat.quant-gas)Quantum mechanicsComposite fermionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter - Quantum GasesQuantumta218BosonREVIEWS OF MODERN PHYSICS
researchProduct

Waves Propagation in Superfluid Helium in Presence of Combined Rotation and Counterflow

2008

Using the linear macroscopic mono-fluid model of liquid helium II, in which the fundamental fields are the density ?, the velocity v, the temperature T and heat flux q and taking into account the expression of an additional pressure tensor P(w), introduced to describe phenomena linked to vortices, a complete study of wave propagation is made in the complex situation involving thermal counterflow in a rotating cylinder.

Physics::Fluid Dynamicsquantum vorticesSuperfluid heliumlcsh:Science (General)lcsh:Q1-390
researchProduct

Turbulent Superfluid Profiles in a Counterflow Channel

2010

We have developed a two-dimensional model of quantised vortices in helium II moving under the influence of applied normal fluid and superfluid in a counterflow channel. We predict superfluid and vortex-line density profiles which could be experimentally tested using recently developed visualization techniques.

Condensed Matter::Quantum GasesPhysicsNormal fluidCondensed Matter::OtherTurbulenceFOS: Physical scienceschemistry.chemical_elementSuperfluid helium; Turbulence; VorticesVorticesMechanicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsVortexTurbulenceCondensed Matter - Other Condensed MatterSuperfluiditychemistryGeneral Materials ScienceSuperfluid heliumSettore MAT/07 - Fisica MatematicaHeliumOther Condensed Matter (cond-mat.other)Communication channelJournal of Low Temperature Physics
researchProduct

Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

2014

Abstract We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

PhysicsCondensed matter physicsTurbulenceHysteresisVortex diffusionQuantum turbulenceStarting vortexCondensed Matter PhysicsQuantum turbulenceElectronic Optical and Magnetic MaterialsVortexVortex ringCondensed Matter::SuperconductivityVortex stretchingHorseshoe vortexQuantized vorticeBurgers vortexElectrical and Electronic EngineeringSettore MAT/07 - Fisica MatematicaPhysica B: Condensed Matter
researchProduct

Skyrmion formation due to unconventional magnetic modes in anisotropic multiband superconductors

2019

Multiband superconductors have a sufficient number of degrees of freedom to allow topological excitations characterized by skyrmionic topological invariants. In the most common, clean s -wave multiband systems, the interband Josephson and magnetic couplings favor composite vortex solutions, without a skyrmionic topological charge. It was discussed recently that certain kinds of anisotropies lead to hybridization of the interband phase difference (Leggett) mode with magnetic modes, dramatically changing the hydromagnetostatics of the system. Here we report this effect for a range of parameters that substantially alter the nature of the topological excitations, leading to solutions characteri…

Condensed Matter::Quantum GasessuprajohtavuusCondensed Matter::Superconductivitymultiband superconductivityvortices in superconductorsCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsuprajohteet
researchProduct

Field dependence of the vortex-core sizes in dirty two-band superconductors

2019

We study the structure of Abrikosov vortices in two-band superconductors for different external magnetic fields and different parameters of the bands. The vortex core size determined by the coherence lengths are found to have qualitatively different behaviour from that determined by the quasiparticle density of states spatial variation. These different vortex core length scales coincide near the upper critical field, while the discrepancy between them becomes quite significant at lower fields. Within the diffusive approximation we demonstrate several generic regimes in the field dependence of the vortex core sizes determined by the disparity of diffusion constants in the two bands.

suprajohtavuusmultiband superconductivityFOS: Physical sciences02 engineering and technology01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)disordered systemsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsCritical fieldPhysicsSuperconductivityCondensed matter physicsCondensed Matter - Superconductivityvortices in superconductors021001 nanoscience & nanotechnologycoherence lengthMagnetic fieldVortexScattering ratePairingDensity of statesQuasiparticle0210 nano-technology
researchProduct