Search results for "wave function"
showing 10 items of 395 documents
Bader’s topological analysis of the electron density in the pressure-induced phase transitions/amorphization in α-quartz from the catastrophe theory …
2013
In this work, the Bader's topological analysis of the electron density, coupled with Thom's catastrophe theory, was used to characterize the pressure-induced transformations in α-quartz. In particular, ab initio calculations of the α-quartz structures in the range 0-105 Gpa have been performed at the HF/DFT exchange-correlation terms level, using Hamiltonians based on a WC1LYP hybrid scheme. The electron densities calculated throughout the ab initio wave functions have been analysed by means of the Bader's theory, seeking for some catastrophic mechanism in the sense of Thom's theory. The analysis mainly showed that there is a typical fold catastrophe feature involving an O-O interaction at …
Fractal eigenstates in disordered systems
1990
Abstract The wave functions of the non-interacting electrons in disordered systems described by a tight-binding model with site-diagonal disorder are investigated by means of the inverse participation ratio. The wave functions are shown to be fractal objects. In three-dimensional samples, a critical fractal dimension can be defined for the mobility edge in the band centre, which yields the mobility edge trajectory in the whole energy range in good agreement with previous calculations based on the investigation of the exponentially decaying transmission coefficient.
Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program hosphe (v1.02)
2010
Abstract We present solution of self-consistent equations for the N 3 LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program hosphe (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summary Program title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGK_…
Comparison of full-configuration interaction and coupled-cluster harmonic and fundamental frequencies for BH and HF
2001
The harmonic and fundamental frequencies are calculated for the potential-energy curves of BH and HF using the full-configuration interaction model and two hierarchies of coupled-cluster wavefunction models. The anharmonic contributions are also obtained using second-order vibrational perturbation theory. A consistent and systematic improvement is seen for both the harmonic and anharmonic contributions when increasing the level of the correlation treatment. The changes are largest for the harmonic contributions. This is also the case when including valence or diffuse functions in the basis set. Second-order perturbation theory gives a good approximation to the anharmonic contribution and in…
Mapping an electron wave function by a local electron scattering probe
2015
A technique is developed which allows for the detailed mapping of the electronic wave function in two-dimensional electron gases with low-temperature mobilities up to $15\times {10}^{6}\;{\mathrm{cm}}^{2}\;{{\rm{V}}}^{-1}\;{{\rm{s}}}^{-1}$. Thin ('delta') layers of aluminium are placed into the regions where the electrons reside. This causes electron scattering which depends very locally on the amplitude of the electron wave function at the position of the Al δ-layer. By changing the distance of this layer from the interface we map the shape of the wave function perpendicular to the interface. Despite having a profound effect on the electron mobiliy, the δ-layers do not cause a widening of …
Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors
2019
We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons. In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)] has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an interpretation in terms of electron-interacting WIMPs cannot be consistent with ex…
Two-body Mechanisms in Pion Scattering and Pion Photoproduction on the Trinucleon
1995
A breakdown of the Impulse Approximation is studied in pion photoproduction and pion charge exchange on 3He at high momentum transfers. The usual DWIA formalism with Faddeev wave functions which works well for small momentum transfers deviates from experimental measurements by up to two orders of magnitude for Q 2 > 6 fm−2. It is found that the explicit inclusion of two-body mechanisms, where the photon or pion is absorbed on one nucleon and the pion is emitted from another nucleon removes most of the disagreement with the data.
Cross-sections for (e, 3e) collisions on helium: the DS6C wavefunction
2006
A dynamically screened product of six pairwise Coulomb functions (DS6C) is used as an analytic approximation to describe the four-body Coulomb continuum state produced by electron-impact full fragmentation of helium. Good agreement is obtained with experimental data close to threshold, where four-body effects are expected to be important. Even for the high impact energy of 640 eV, four-body effects still play a role in deciding the shape of multi-differential cross-sections.
A consistent study of the the low energy baryon spectrum and the nucleon-nucleon interaction within the chiral quark model
1995
By solving the Schr\"{o}dinger equation for the three-quark system in the hyperspherical harmonic approach, we have studied the low energy part of the nucleon and $\Delta$ spectra using a quark-quark interaction which reproduces the nucleon-nucleon phenomenology. The quark-quark hamiltonian considered includes, besides the usual one-gluon exchange, pion and sigma exchanges generated by the chiral symmetry breaking. The baryonic spectrum obtained is reasonable and the resulting wave function gives consistency to the ansatz used in the two baryon system.
Forward J/ψ production at high energy: Centrality dependence and mean transverse momentum
2016
Forward rapidity $J/\psi$ meson production in proton-nucleus collisions can be an important constraint of descriptions of the small-$x$ nuclear wavefunction. In an earlier work we studied this process using a dipole cross section satisfying the Balitsky-Kovchegov equation, fit to HERA inclusive data and consistently extrapolated to the nuclear case using a standard Woods-Saxon distribution. In this paper we present further calculations of these cross sections, studying the mean transverse momentum of the meson and the dependence on collision centrality. We also extend the calculation to backward rapidities using nuclear parton distribution functions. We show that the parametrization is over…