Search results for "wave function"

showing 10 items of 395 documents

Bader’s topological analysis of the electron density in the pressure-induced phase transitions/amorphization in α-quartz from the catastrophe theory …

2013

In this work, the Bader's topological analysis of the electron density, coupled with Thom's catastrophe theory, was used to characterize the pressure-induced transformations in α-quartz. In particular, ab initio calculations of the α-quartz structures in the range 0-105 Gpa have been performed at the HF/DFT exchange-correlation terms level, using Hamiltonians based on a WC1LYP hybrid scheme. The electron densities calculated throughout the ab initio wave functions have been analysed by means of the Bader's theory, seeking for some catastrophic mechanism in the sense of Thom's theory. The analysis mainly showed that there is a typical fold catastrophe feature involving an O-O interaction at …

Bader's topological analysiSettore GEO/06 - MineralogiaPhase transitionElectron densityCondensed matter physicsChemistryCatastrophe theoryAb initioQuartzElectronTopologyAmorphizationHigh pressureCondensed Matter::Materials ScienceGeochemistry and PetrologyAb initio quantum chemistry methodsGeneral Materials ScienceVector fieldCatastrophe theoryWave functionPhase transitionPhysics and Chemistry of Minerals
researchProduct

Fractal eigenstates in disordered systems

1990

Abstract The wave functions of the non-interacting electrons in disordered systems described by a tight-binding model with site-diagonal disorder are investigated by means of the inverse participation ratio. The wave functions are shown to be fractal objects. In three-dimensional samples, a critical fractal dimension can be defined for the mobility edge in the band centre, which yields the mobility edge trajectory in the whole energy range in good agreement with previous calculations based on the investigation of the exponentially decaying transmission coefficient.

Statistics and ProbabilityMathematical analysisInverseElectronCondensed Matter PhysicsFractal dimensionsymbols.namesakeFractalFractal derivativesymbolsTransmission coefficientStatistical physicsWave functionHamiltonian (quantum mechanics)MathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program hosphe (v1.02)

2010

Abstract We present solution of self-consistent equations for the N 3 LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program hosphe (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summary Program title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGK_…

PhysicsMathematical analysisGeneral Physics and AstronomySpherical harmonicsCPU timeDifferential operatorsymbols.namesakeHardware and ArchitectureQuantum electrodynamicsSelf-consistent mean fieldsymbolsNeutronCircular symmetryWave functionHamiltonian (quantum mechanics)Computer Physics Communications
researchProduct

Comparison of full-configuration interaction and coupled-cluster harmonic and fundamental frequencies for BH and HF

2001

The harmonic and fundamental frequencies are calculated for the potential-energy curves of BH and HF using the full-configuration interaction model and two hierarchies of coupled-cluster wavefunction models. The anharmonic contributions are also obtained using second-order vibrational perturbation theory. A consistent and systematic improvement is seen for both the harmonic and anharmonic contributions when increasing the level of the correlation treatment. The changes are largest for the harmonic contributions. This is also the case when including valence or diffuse functions in the basis set. Second-order perturbation theory gives a good approximation to the anharmonic contribution and in…

Nuclear magnetic resonanceCoupled clusterChemistryQuantum mechanicsAnharmonicityHarmonicGeneral Physics and AstronomyPhysical and Theoretical ChemistryConfiguration interactionWave functionFull configuration interactionDiatomic moleculeBasis setChemical Physics Letters
researchProduct

Mapping an electron wave function by a local electron scattering probe

2015

A technique is developed which allows for the detailed mapping of the electronic wave function in two-dimensional electron gases with low-temperature mobilities up to $15\times {10}^{6}\;{\mathrm{cm}}^{2}\;{{\rm{V}}}^{-1}\;{{\rm{s}}}^{-1}$. Thin ('delta') layers of aluminium are placed into the regions where the electrons reside. This causes electron scattering which depends very locally on the amplitude of the electron wave function at the position of the Al δ-layer. By changing the distance of this layer from the interface we map the shape of the wave function perpendicular to the interface. Despite having a profound effect on the electron mobiliy, the δ-layers do not cause a widening of …

2DEG; Heterostructures; Electron wave function; GaAs/AlGaAs; Electron scatteringFOS: Physical sciencesGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyElectronQuantum Hall effect01 natural sciencesGaAs/AlGaAsElectron wave functionAluminiumPosition (vector)2DEGMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPerpendicularHeterostructuresElectron scattering010306 general physicsWave functionPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physics021001 nanoscience & nanotechnologyAmplitudechemistryheterostructureselectron scattering0210 nano-technologyElectron scatteringelectron wave function
researchProduct

Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors

2019

We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons. In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)] has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an interpretation in terms of electron-interacting WIMPs cannot be consistent with ex…

DAMA/LIBRACosmology and Nongalactic Astrophysics (astro-ph.CO)detector: performancePhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementElectron01 natural sciencesWIMP: dark matterNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)XenonWIMP0103 physical sciences010306 general physicsenhancementscintillation counterenergy: lowPhysicsScintillationxenon: liquid010308 nuclear & particles physicsatom: wave functionDAMAmodulationHigh Energy Physics - Phenomenologychemistryelectron: scatteringWeakly interacting massive particles[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]direct detection[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Event (particle physics)Astrophysics and astroparticle physicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review
researchProduct

Two-body Mechanisms in Pion Scattering and Pion Photoproduction on the Trinucleon

1995

A breakdown of the Impulse Approximation is studied in pion photoproduction and pion charge exchange on 3He at high momentum transfers. The usual DWIA formalism with Faddeev wave functions which works well for small momentum transfers deviates from experimental measurements by up to two orders of magnitude for Q 2 > 6 fm−2. It is found that the explicit inclusion of two-body mechanisms, where the photon or pion is absorbed on one nucleon and the pion is emitted from another nucleon removes most of the disagreement with the data.

PhysicsNuclear physicsPionPhotonScatteringNuclear TheoryHigh Energy Physics::ExperimentImpulse (physics)Nuclear ExperimentNucleonWave functionOrder of magnitudeCharge exchange
researchProduct

Cross-sections for (e, 3e) collisions on helium: the DS6C wavefunction

2006

A dynamically screened product of six pairwise Coulomb functions (DS6C) is used as an analytic approximation to describe the four-body Coulomb continuum state produced by electron-impact full fragmentation of helium. Good agreement is obtained with experimental data close to threshold, where four-body effects are expected to be important. Even for the high impact energy of 640 eV, four-body effects still play a role in deciding the shape of multi-differential cross-sections.

PhysicsContinuum (measurement)chemistry.chemical_elementCondensed Matter PhysicsAtomic and Molecular Physics and OpticschemistryFragmentation (mass spectrometry)CoulombImpact energyAtomic physicsBasso continuoWave functionHeliumElectron ionizationJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

A consistent study of the the low energy baryon spectrum and the nucleon-nucleon interaction within the chiral quark model

1995

By solving the Schr\"{o}dinger equation for the three-quark system in the hyperspherical harmonic approach, we have studied the low energy part of the nucleon and $\Delta$ spectra using a quark-quark interaction which reproduces the nucleon-nucleon phenomenology. The quark-quark hamiltonian considered includes, besides the usual one-gluon exchange, pion and sigma exchanges generated by the chiral symmetry breaking. The baryonic spectrum obtained is reasonable and the resulting wave function gives consistency to the ansatz used in the two baryon system.

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryQuark modelFOS: Physical sciencesFísicaNuclear Theory (nucl-th)Baryonsymbols.namesakePionsymbolsHigh Energy Physics::ExperimentNuclear ExperimentHamiltonian (quantum mechanics)Chiral symmetry breakingNucleonWave functionAnsatzPhysics Letters B
researchProduct

Forward J/ψ production at high energy: Centrality dependence and mean transverse momentum

2016

Forward rapidity $J/\psi$ meson production in proton-nucleus collisions can be an important constraint of descriptions of the small-$x$ nuclear wavefunction. In an earlier work we studied this process using a dipole cross section satisfying the Balitsky-Kovchegov equation, fit to HERA inclusive data and consistently extrapolated to the nuclear case using a standard Woods-Saxon distribution. In this paper we present further calculations of these cross sections, studying the mean transverse momentum of the meson and the dependence on collision centrality. We also extend the calculation to backward rapidities using nuclear parton distribution functions. We show that the parametrization is over…

PhysicsParticle physicsta114Nuclear TheoryMeson010308 nuclear & particles physicsNuclear TheoryPartonHERA01 natural sciencesGluonNuclear physicsJ/psi mesonsHigh Energy Physics - PhenomenologyDistribution function0103 physical sciencesHigh Energy Physics::ExperimentRapidityproton-nucleus collisionsNuclear Experiment010306 general physicsNucleonWave functionPhysical Review D
researchProduct