Search results for "weak solution"

showing 2 items of 52 documents

On the second-order regularity of solutions to the parabolic p-Laplace equation

2022

AbstractIn this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that $$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$ D ( D u p - 2 + s 2 D u ) exists as a function and belongs to $$L^{2}_{\text {loc}}$$ L loc 2 with $$s>-1$$ s > - 1 and $$1<p<\infty $$ 1 < p < ∞ . The range of s is sharp.

osittaisdifferentiaaliyhtälötp-parabolic functionstime derivativeSobolev regularityMathematics::Analysis of PDEsfundamental inequalityWeak solutionsMathematics (miscellaneous)Fundamental inequalityweak solutionsGRADIENT111 MathematicsTime derivativeEQUIVALENCE
researchProduct

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct