Search results for "wetting"

showing 10 items of 235 documents

The Grain Boundary Wetting Phenomena in the Ti-Containing High-Entropy Alloys: A Review

2021

In this review, the phenomenon of grain boundary (GB) wetting by melt is analyzed for multicomponent alloys without principal components (also called high-entropy alloys or HEAs) containing titanium. GB wetting can be complete or partial. In the former case, the liquid phase forms the continuous layers between solid grains and completely separates them. In the latter case of partial GB wetting, the melt forms the chain of droplets in GBs, with certain non-zero contact angles. The GB wetting phenomenon can be observed in HEAs produced by all solidification-based technologies. GB leads to the appearance of novel GB tie lines Twmin and Twmax in the multicomponent HEA phase diagrams. The so-cal…

010302 applied physicsPhase transitionMaterials scienceMining engineering. MetallurgyHigh entropy alloysMetals and AlloysTN1-997Titanium alloyThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesphase transitionsContact anglePhase (matter)titanium alloys0103 physical sciencesgrain boundary wettingGeneral Materials ScienceGrain boundaryWetting0210 nano-technologyphase diagramsPhase diagramhigh-entropy alloys
researchProduct

Wetting Patterns Estimation Under Subsurface Drip Irrigation Systems for Different Discharge Rates and Soil Types

2018

Knowledge about the moisture distribution pattern shape and volume of soil wetted by an emitter is the basic need for better subsurface drip irrigation system. The dimensions of the pattern are imperative in selecting the right spacing between emitters and the suitable distance between laterals.

0106 biological sciencesSoil classificationSoil scienceDrip irrigation010501 environmental sciences01 natural sciencesPhysics::GeophysicsMoisture distributionVolume (thermodynamics)Physics::Accelerator PhysicsEnvironmental scienceWettingPhysics::Atmospheric and Oceanic Physics010606 plant biology & botany0105 earth and related environmental sciencesCommon emitter
researchProduct

X-ray CT imaging as a scientific tool to study the capillary water absorption in sedimentary rocks used in cultural heritages

2009

This paper proposes the X-Ray CT imaging as appropriate tool for investigating the capillary water absorption in sedimentary rocks. This technique, in fact, provides information useful for deeping the knowledge about of the porosity and the kinetics of the water capillary absorption in porous materials. The possibility to improve in non invasive manner, the understanding of this phenomenon, constitutes a fundamental aspect to take actions in the restoration and conservation of lapideous artifact and monuments from cultural heritages. The investigated sedimentary rocks come from different Sicilian quarries and were used for the building of the Greek temples in the archaeological areas of Agr…

Absorption of waterGeographyRegion of interestX-ray CT cultural heritagesCapillary water absorptionMineralogySedimentary rockWettingPorosityPorous mediumAbsorption (electromagnetic radiation)SPIE Proceedings
researchProduct

Agricultural management affects the response of soil bacterial community structure and respiration to water-stress

2013

International audience; Soil microorganisms are responsible for organic matter decomposition processes that regulate soil carbon storage and mineralisation to CO2. Climate change is predicted to increase the frequency of drought events, with uncertain consequences for soil microbial communities. In this study we tested the hypothesis that agricultural management used to enhance soil carbon stocks would increase the stability of microbial community structure and activity in response to water-stress. Soil was sampled from a long-term field trial with three soil carbon management systems and was used in a laboratory study of the effect of a dry wet cycle on organic C mineralisation and microbi…

Agricultural land use010504 meteorology & atmospheric sciencesSoil biodiversity[SDV]Life Sciences [q-bio]Soil biologySoil Science01 natural sciencesMicrobiologyDrying-rewettingFUNCTIONAL STABILITYSoil retrogression and degradation[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyOrganic matterGlobal changeNITROGEN MINERALIZATION0105 earth and related environmental sciences2. Zero hungerchemistry.chemical_classificationC mineralisationCLIMATE-CHANGEMICROBIAL COMMUNITYEcologySoil organic matterLAND-USE CHANGE04 agricultural and veterinary sciencesSoil carbonRESILIENCE15. Life on landDRYING-REWETTING FREQUENCYORGANIC-MATTERAgronomychemistryMicrobial population biology13. Climate action[SDE]Environmental Sciences040103 agronomy & agricultureBacterial community structure0401 agriculture forestry and fisheriesEnvironmental scienceCATABOLIC DIVERSITYCARBON STOCKSMicrocosmStabilitySoil Biology and Biochemistry
researchProduct

MBE growth and properties of low-density InAs/GaAs quantum dot structures.

2011

We present the results of a comprehensive study carried out on morphological, structural and optical properties of InAs/GaAs quantum dot structures grown by Molecular Beam Epitaxy. InAs quantum dots were deposited at low growth rate and high growth temperature and were capped with InGaAs upper confining layers. Owing to these particular design and growth parameters, quantum dot densities are in the order of 4-5x109 cm-2 with emission wavelengths ranging from 1.20 to 1.33 µm at 10 K, features that make these structures interesting for single-photon operation at telecom wavelength. High resolution structural techniques show that In content and composition profiles in the structures depend on …

Arrhenius equationeducation.field_of_studystructural and optical characterizationPhotoluminescenceMaterials scienceCondensed matter physicslow-dimensional semiconductor systemsCondensed Matter::OtherPopulationmolecular-beam epitaxyGeneral ChemistryCondensed Matter PhysicsEpitaxyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlow-dimensional semiconductor systems molecular-beam epitaxy structural and optical characterizationsymbols.namesakeCondensed Matter::Materials ScienceQuantum dotQuantum dot lasersymbolsGeneral Materials ScienceeducationMolecular beam epitaxyWetting layer
researchProduct

Influence of gas environment on the dynamics of wetting transition of laser-textured stainless steel meshes

2021

We analyze the role of surrounding gas and aging in ambient air in the wettability behavior of laser-processed stainless steel meshes. Laser texturing of meshes was carried out in the presence of different gases (N2, O2, CO2, Ar, and SF6) in ambient atmospheric air and under different vacuum conditions. The influence of each gas on the evolution of the wettability properties after aging in ambient air is analyzed. The effects of low-pressure and vacuum aging allowed transforming the initial superhydrophilic characteristics of the laser-structured meshes to an almost superhydrophobic state.

Atmospheric airMaterials sciencePhysicsQC1-999General Physics and AstronomyLaserAmbient airlaw.inventionWetting transitionSuperhydrophilicitylawPolygon meshWettingComposite materialAIP Advances
researchProduct

High performance composites containing perfluoropolyethers-functionalized carbon-based nanoparticles: Rheological behavior and wettability

2016

Abstract Ultra High Molecular Weight Polyethylene (UHMWPE) based composites filled with carbon nanotubes (CNTs) and carbon black (CB) modified by perfluoropolyethers (PFPE) have been formulated. All composites show a segregated morphology with nanofillers selectively localized at the polymer particle–particle interface. The composites rheological properties have been deeply investigated: the PFPE functionalities linked on CNTs facilitate the semi-3D nanofillers network formation in the composites that show a solid-like behaviour even at lower investigated filler contents, reaching the rheological percolation threshold at lower nanofiller content than bare CNTs filled composites. For composi…

B. Rheological propertiePolymer-matrix composites (PMCs)Materials scienceNano-structures Polymer-matrix composites (PMCs) Rheological properties Surface properties Perfluoropolyethers nanofillersB. Surface propertiesNanoparticlechemistry.chemical_elementCeramics and Composite02 engineering and technologyCarbon nanotube010402 general chemistry01 natural sciencesPerfluoropolyethers nanofillersIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundA. Polymer-matrix composites (PMCs)lawA. Nano-structures; A. Polymer-matrix composites (PMCs); B. Rheological properties; B. Surface properties; Perfluoropolyethers nanofillers; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringA. Nano-structuresSurface propertiesMechanics of MaterialRheological propertiesComposite materialPerfluoropolyethers nanofillerUltra-high-molecular-weight polyethylenechemistry.chemical_classificationMechanical EngineeringPercolation thresholdCarbon blackPolymer021001 nanoscience & nanotechnologyB. Surface propertie0104 chemical sciencesB. Rheological propertieschemistryNano-structuresMechanics of MaterialsA. Nano-structureCeramics and CompositesWetting0210 nano-technologyCarbon
researchProduct

Model calculations for wetting transitions in polymer mixtures

1985

Partially compatible binary mixtures of linear flexible polymers are considered in the presence of a wall which preferentially adsorbs one component. Using a Flory-Huggins type mean field approach, it is shown that in typical cases at two-phase coexistence the wall is always « wet », i.e. coated with a macroscopically thick layer of the preferred phase, and the transition to the non wet state occurs at volume fractions of the order of 1/~N (where N is the chain length) at the coexistence curve. Both first and second order wetting transitions are found, and the variation of the surface layer thickness, surface excess energy and related quantities through the transition is studied. We discuss…

BinodalCondensed matter physicsChemistryThermodynamicsCondensed Matter::Soft Condensed Mattersymbols.namesakeGibbs isothermWetting transitionMean field theoryPhase (matter)symbolsIsing modelWettingSurface layerJournal de Physique
researchProduct

Phase separation versus wetting: A mean field theory for symmetrical polymer mixtures confined between selectively attractive walls

1996

Partially compatible symmetrical (N A # N B = N) binary mixtures of linear flexible polymers (A, B) are considered in the presence of two equivalent walls a distance D apart, assuming that both walls preferentially adsorb the same component. Using a Flory-Huggins type mean field approach analogous to previous work studying wetting phenomena in the semi-infinite version of this model, where D → ∞, it is shown that a single phase transition occurs in this thin film geometry, namely a phase separation between an A-rich and a B-rich phase (both phases include the bulk of the film). The coexistence curve is shifted to smaller values of the inverse Flory-Huggins parameter x -1 with decreasing D, …

BinodalPhysics and Astronomy (miscellaneous)Mean field theoryCondensed matter physicsAntisymmetric relationChemistryPhase (matter)Volume fractionGeneral EngineeringInverseBoundary value problemWettingAtomic and Molecular Physics and Optics
researchProduct

Molecular Dynamics simulation of evaporation processes of fluid bridges confined in slit-like pore

2009

A simple fluid, described by point-like particles interacting via the Lennard-Jones potential, is considered under confinement in a slit geometry between two walls at distance Lz apart for densities inside the vapor-liquid coexistence curve. Equilibrium then requires the coexistence of a liquid "bridge" between the two walls, and vapor in the remaining pore volume. We study this equilibrium for several choices of the wall-fluid interaction (corresponding to the full range from complete wetting to complete drying, for a macroscopically thick film), and consider also the kinetics of state changes in such a system. In particular, we study how this equilibrium is established by diffusion proces…

BinodalRange (particle radiation)Materials scienceCapillary actionEvaporationThermodynamicsFOS: Physical sciencesCondensed Matter - Soft Condensed MatterPhysics::Fluid DynamicsMolecular dynamicsVolume (thermodynamics)Soft Condensed Matter (cond-mat.soft)WettingDiffusion (business)
researchProduct