Search results for "wild type"
showing 10 items of 181 documents
Dissection of the structure-forming activity from the structure-guiding activity of silicatein: a biomimetic molecular approach to print optical fibe…
2020
Silicateins, a group of proteins forming the proteinaceous axial filaments of the inorganic biosilica spicules of the siliceous sponges, are unique in their dual function to exhibit both structure-guiding (providing the structural platform for the biosilica product) and structure-forming activities (enzymatic function: biosilica synthesis from ortho-silicate). The primary translation product of the silicatein gene comprises a signal peptide, a pro-peptide and, separated by an autocatalytic cleavage site glutamine/aspartic acid [Q/D], the sequence of the mature silicatein protein. In order to dissect the biocatalytic, structure-forming activity of silicatein from its structure-guiding functi…
A novel antiviral approach.
2012
Viral infections are often the etiological agents of severe acute and chronic human diseases. Their peculiar biology usually leads to the need of design specific therapies for each virus, and the eradication of the viruses and the healing of the patients very often are not reached also after decades of theoretical and applied researches. HIV is a classical example of how the efforts of the researchers may be disappointed in eradicating a virus infection in an infected patient. Here I present a hypothesis for a new antiviral approach that may be suitable for the treatment of HIV infected patients. The same approach, with opportune modifications, may be also applied as healing strategy for a …
Investigating the Molecular Mechanism of H3B-8800: A Splicing Modulator Inducing Preferential Lethality in Spliceosome-Mutant Cancers.
2021
The SF3B1 protein, part of the SF3b complex, recognizes the intron branch point sequence of precursor messenger RNA (pre-mRNA), thus contributing to splicing fidelity. SF3B1 is frequently mutated in cancer and is the target of distinct families of splicing modulators (SMs). Among these, H3B-8800 is of particular interest, as it induces preferential lethality in cancer cells bearing the frequent and highly pathogenic K700E SF3B1 mutation. Despite the potential of H3B-8800 to treat myeloid leukemia and other cancer types hallmarked by SF3B1 mutations, the molecular mechanism underlying its preferential lethality towards spliceosome-mutant cancer cells remains elusive. Here, microsecond-long a…
α-Synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines
2004
α-Synuclein (α-syn) is a small protein of unknown function that is found aggregated in Lewy bodies, the histopathological hallmark of sporadic Parkinson disease and other synucleinopathies. Mutations in the α-syn gene and a triplication of its gene locus have been identified in early onset familial Parkinson disease. α-Syn turnover can be mediated by the proteasome pathway. A survey of published data may lead to the suggestion that overexpression of α-syn wild type, and/or their variants (A53T and A30P), may produce a decrease in proteasome activity and function, contributing to α-syn aggregation. To investigate the relationship between synuclein expression and proteasome function we have s…
2021
Physical activity is considered a promising preventive intervention to reduce the risk of developing Alzheimer’s disease (AD). However, the positive effect of therapeutic administration of physical activity has not been proven conclusively yet, likely due to confounding factors such as varying activity regimens and life or disease stages. To examine the impact of different routines of physical activity in the early disease stages, we subjected young 5xFAD and wild-type mice to 1-day (acute) and 30-day (chronic) voluntary wheel running and compared them with age-matched sedentary controls. We observed a significant increase in brain lactate levels in acutely trained 5xFAD mice relative to al…
Protease-mediated processing of Argonaute proteins controls small RNA association
2020
SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a cha…
Cellular UDP-Glucose Deficiency Caused by a Single Point Mutation in the UDP-Glucose Pyrophosphorylase Gene
1997
We previously isolated a mutant cell that is the only mammalian cell reported to have a persistently low level of UDP-glucose. In this work we obtained a spontaneous revertant whose UDP-glucose level lies between those found in the wild type and the mutant cell. The activity of UDP-glucose pyrophosphorylase (UDPG:PP), the enzyme that catalyzes the formation of UDP-glucose, was in the mutant 4% and in the revertant 56% of the activity found in the wild type cell. Sequence analysis of UDPG: PP cDNAs from the mutant cell showed one missense mutation, which changes amino acid residue 115 from glycine to aspartic acid. The substituted glycine is located within the largest stretch of strictly con…
UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii.
1996
Abstract We have previously isolated a fibroblast mutant cell with high resistance to the two Rho-modifying glucosyltransferase toxins A and B of Clostridium difficile. We demonstrate here a low level of UDP-glucose in the mutant, which explains its toxin resistance since: (i) to obtain a detectable toxin B-mediated Rho modification in lysates of mutant cells, addition of UDP-glucose was required, and it promoted the Rho modification dose-dependently; (ii) high pressure liquid chromatography analysis of nucleotide extracts of cells indicated that the level of UDP-glucose in the mutant (0.8 nmol/106 cells) was lower than in the wild type (3.7 nmol/106 cells); and (iii) sensitivity to toxin B…
Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein–Coupled Receptor OGR1 (GPR68)
2016
Background & Aims: A novel family of proton-sensing G-proteinâcoupled receptors, including ovarian cancer G-proteinâcoupled receptor 1 (OGR1) (GPR68) has been identified to play a role in pH homeostasis. Hypoxia is known to change tissue pH as a result of anaerobic glucose metabolism through the stabilization of hypoxia-inducible factor-1α. We investigated how hypoxia regulates the expression of OGR1 in the intestinal mucosa and associated cells. Methods: OGR1 expression in murine tumors, human colonic tissue, and myeloid cells was determined by quantitative reverse-transcription polymerase chain reaction. The influence of hypoxia on OGR1 expression was studied in monocytes/macrophages and…
Anti-inflammatory Function of High-Density Lipoproteins via Autophagy of IκB Kinase
2015
Background & Aims: Plasma levels of high-density lipoprotein (HDL) cholesterol are frequently found decreased in patients with inflammatory bowel disease (IBD). Therefore, and because HDL exerts anti-inflammatory activities, we investigated whether HDL and its major protein component apolipoprotein A-I (apoA-I) modulate mucosal inflammatory responses in vitro and in vivo. Methods: The human intestinal epithelial cell line T84 was used as the in vitro model for measuring the effects of HDL on the expression and secretion of tumor necrosis factor (TNF), interleukin-8 (IL-8), and intracellular adhesion molecule (ICAM). Nuclear factor-κB (NF-κB)-responsive promoter activity was studied by …