Search results for "xerogel"
showing 9 items of 9 documents
Catalysis with Doped Sol-Gel Silicates
2011
Silicates doped with catalytic species have only been slowly adopted by the fine chemicals and pharmaceutical industries, in spite of their remarkable and unique properties such as pronounced physical and chemical stability; high (enantio)selective activity and ease of materials production and application. This is now changing thanks to stricter safety regulations and to concomitant success of the first commercial catalysts. In this account we tell the story of these materials and identify some deficiencies in the innovation process that may serve as lesson in guiding the future management of innovation in these relevant industries.
Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers
2014
Abstract Hypothesis The microcrystalline fibers of N -(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Experiments Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infr…
Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials.
2021
International audience; Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite-whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepi…
Dynamic properties of solvent confined in silica gels studied by broadband dielectric spectroscopy
2007
Abstract We report the results of a broadband (10−2–107 Hz) dielectric spectroscopy study on a solvent system (glycerol–water solution) confined in a porous silica matrix. The dielectric relaxation of the system is studied as a function of both temperature (120–280 K) and solvent composition (0–36 glycerol molar percentage), at constant matrix composition. Our data show that glycerol–water systems confined inside silica gel are characterized by a very complex dynamics quite different from that observed in solution, thus indicating that confinement may deeply modify solvent dynamics. Indeed in addition to the relaxation processes similar to those occurring in bulk samples, new dielectric rel…
High Fluorescence of Thioflavin T Confined in Mesoporous Silica Xerogels
2013
Trapping of organic molecules and dyes within nanoporous matrices is of great interest for the potential creation of new materials with tailored features and, thus, different possible applications ranging from nanomedicine to material science. The understanding of the physical basis of entrapment and the spectral properties of the guest molecules within the host matrix is an essential prerequisite for the design and control of the properties of these materials. In this work, we show that a mesoporous silica xerogel can efficiently trap the dye thioflavin T (ThT, a molecule used as a marker of amyloid fibrils and with potential drug benefits), sequestering it from an aqueous solution and pro…
EXAFS studies on the local structure of Er3+ ions in silica xerogels co-doped with aluminium
2001
The local environment around Er3+ ions in wet and densified (at 900°C) silica xerogels (pure and co-doped with aluminium) has been studied at the Er L3-edge by X-ray absorption spectroscopy using the fluorescence detection technique. The radial distribution functions (RDF), reconstructed from X-ray absorption fine structure (EXAFS), show several changes in the local co-ordination of erbium ions upon densification: shortening of the Er-O and Er-Si/Al distances, decrease of the co-ordination numbers and broadening of the Er-O RDF. The effect of Al co-doping is clearly discerned by EXAFS in both the first and second co-ordination shells for densified gels and mainly in the second shell for wet…
THE PHYSICAL ORIGIN OF PROTEIN DYNAMICAL TRANSITION: A LIQUID-LIQUID TRANSITION IN HYDRATION WATER?
2015
In this thesis I study, by means of neutron scattering, calorimetry, and dielectric spectroscopy, the physical origin of protein dynamical transition (PDT) which is usually observed at ~230 K in protein hydrated powders and is deemed necessary for protein function. Measurements reported in this thesis have been performed on hydrated powders of Myoglobin. The combined use of different experimental techniques gives a coherent description of the PDT and reveals a connection with a liquid-liquid crossover occurring in the protein hydration water at about the same temperature. In order to deepen our understanding of this connection and to obtain a direct experimental evidence of the existence of…
Dynamics of supercooled confined water measured by deep inelastic neutron scattering
2017
In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~ 20 Ã ) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquidâliquid transition of supercooled confined water) on a âwetâ sample with hydration h ~ 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually âdryâ sample at h ~ 7% was also inve…
Supercooled Water Confined in a Silica Xerogel: Temperature and Pressure Dependence of Boson Peak and of Mean Square Displacements
2013
A silica xerogel can be obtained from an alcoxide precursor (TMOS, tetramethylortosilcate) via the sol-gel method: TMOS hydrolysis and subsequent polycondensation yields a solid, disordered, porous SiO2 matrix (average pore dimensions ~20Å). Inside the pores water is trapped and the hydration level h=gr[H2O]/gr[SiO2] can be easily controlled. The presence and temperature dependence of the boson peak (BP) in xerogel confined supercooled water was studied with inelastic neutron scattering (spectrometer IN6 at ILL, Grenoble) in xerogel samples having h=0.4 and h=0.2. After careful subtraction of the contributions arising from the matrix and from quasi-elastic scattering, the BP contribution wa…