Search results for "xperimental results"
showing 10 items of 152 documents
SOX : short distance neutrino oscillations with Borexino
2014
Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…
Recent Borexino results and perspectives of the SOX measurement
2017
International audience; Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics disciplines such as astrophysics (star physics, star formation, etc.), astroparticle and particle physics. Phase II started in 2011 and its aim is to improve the phase I results, in particular the measurements of the neutrino fluxes from the pep and CNO processes. By the end of this year, data taking from the sun will be over…
Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS
2021
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWFW and FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq and FAPESP, Brazil, NSERC, NRC, and CFI, Canada, CERN and ANID, Chile, CAS, MOST, and NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, and VSC CR, Czech Republic, DNRF and DNSRC, Denmark, IN2P3-CNRS and CEA-DRF/IRFU, France, SRNSFG, Georgia, BMBF, HGF, and MPG, Germany, GSRT, Greece, RGC and Hong Kong SAR, China, ISF and Benoziyo Center, Israel, INFN, Italy, MEXT and JSPS, Japan, CNR…
Combination of D0 measurements of the top quark mass
2017
We present a combination of measurements of the top quark mass by the D0 experiment in the lepton+jets and dilepton channels. We use all the data collected in Run I (1992--1996) at $\sqrt s=1.8$ TeV and Run II (2001--2011) at $\sqrt s=1.96$ TeV of the Tevatron $p \bar{p}$ collider, corresponding to integrated luminosities of 0.1 fb$^{-1}$ and 9.7 fb$^{-1}$, respectively. The combined result is: $m_t = 174.95 \pm0.40\,{\rm(stat)} \pm 0.64\,{\rm(syst)}\,{\rm{GeV}}=174.95 \pm 0.75 \, {\rm{GeV}}$.
Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron
2018
The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √s=1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is At¯tFB=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.
Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting
2016
We measure the top quark mass in dilepton final states of top-antitop events in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb^-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in top-antitop to lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 +/- 1.36(stat) +/- 0.85(syst) GeV.
Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T
2019
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…
Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment
2019
Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the standard model via vector boson fusion, Z(ℓℓ)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb⁻¹ of pp collisions at a center-of-mass energy of √s = 13 TeV at the LHC. In combination with the results at √s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26(0.17-0.05+0.07) at 95% confidence level is observed (expected).
“Vendor-Affected” WLAN experimental results: A Pandora’s Box?
2008
Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2
2019
The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas fac…